QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#247307 | #7627. Phony | ucup-team635# | RE | 0ms | 2028kb | Rust | 7.7kb | 2023-11-11 14:00:38 | 2023-11-11 14:00:40 |
Judging History
answer
use std::collections::*;
use std::io::Write;
type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;
fn run() {
input! {
n: usize,
m: usize,
k: i64,
a: [i64; n],
ask: [(String, usize); m],
}
let mut a = a;
a.sort();
let mut tree = build(&a);
let out = std::io::stdout();
let mut out = std::io::BufWriter::new(out.lock());
for (op, val) in ask {
if op == "C" {
let mut rem = val as i64;
while rem > 0 {
let max = tree.max().unwrap();
let (l, mut r) = tree.split_key(max - k + 1);
let lmax = l.max().unwrap_or(std::i64::MIN / 2);
let rsize = r.size() as i64;
let q = (rem / rsize).min((r.min().unwrap() - lmax) / k);
r.update(q * k);
rem -= q * k;
let (a, mut b) = r.split_key(lmax + k);
if rem >= (b.size() as i64) {
rem -= b.size() as i64;
b.update(k);
tree = l.merge(b).merge(a);
} else {
let s = b.size() - rem as usize;
let (c, mut d) = b.split(s);
d.update(k);
tree = l.merge(d).merge(a).merge(c);
rem = 0;
}
}
} else {
let ans = tree.find_kth(n - val);
writeln!(out, "{}", ans).ok();
}
}
}
fn build(a: &[i64]) -> Tree {
if a.is_empty() {
return Tree::default();
}
let m = a.len() / 2;
let v = a[m];
let mut node = Node {
val: v,
max: v,
min: v,
sub: 0,
size: 1,
left: Tree::default(),
right: Tree::default(),
};
node.left = build(&a[..m]);
node.right = build(&a[(m + 1)..]);
node.update();
Tree(Some(Box::new(node)))
}
fn main() {
run();
}
#[derive(Default, Debug)]
struct Tree(Option<Box<Node>>);
#[derive(Debug)]
struct Node {
val: i64,
max: i64,
min: i64,
sub: i64,
size: usize,
left: Tree,
right: Tree,
}
impl Tree {
fn size(&self) -> usize {
self.0.as_ref().map_or(0, |p| p.size)
}
fn max(&self) -> Option<i64> {
self.0.as_ref().map(|p| p.max)
}
fn min(&self) -> Option<i64> {
self.0.as_ref().map(|p| p.min)
}
fn split(mut self, k: usize) -> (Self, Self) {
assert!(k <= self.size());
if k == 0 {
return (Tree::default(), self);
}
if k == self.size() {
return (self, Tree::default());
}
let node = self.0.as_mut().unwrap();
node.push();
let l = node.left.size();
if k <= l {
let (a, b) = node.take_left().split(k);
node.left = b;
node.update();
(a, self)
} else {
let (a, b) = node.take_right().split(k - 1 - l);
node.right = a;
node.update();
(self, b)
}
}
fn split_key(mut self, key: i64) -> (Self, Self) {
if self.0.is_none() {
return (Tree::default(), Tree::default());
}
let node = self.0.as_mut().unwrap();
node.push();
if key <= node.val {
let (a, b) = node.take_left().split_key(key);
(a, b.merge(self))
} else {
let (a, b) = node.take_right().split_key(key);
(self.merge(a), b)
}
}
fn merge(mut self, mut rhs: Self) -> Self {
if self.size() == 0 {
return rhs;
}
if rhs.size() == 0 {
return self;
}
let x = self.size();
let y = rhs.size();
if rand() % (x + y) < x {
let node = self.0.as_mut().unwrap();
node.push();
let b = node.take_right().merge(rhs);
node.right = b;
node.update();
self
} else {
let node = rhs.0.as_mut().unwrap();
node.push();
let b = self.merge(node.take_left());
node.left = b;
node.update();
rhs
}
}
fn update(&mut self, v: i64) {
self.0.as_mut().map(|node| {
node.apply(v);
});
}
fn find_kth(&mut self, k: usize) -> i64 {
assert!(k < self.size());
let node = self.0.as_mut().unwrap();
node.push();
let l = node.left.size();
if k < l {
node.left.find_kth(k)
} else if k == l {
node.val
} else {
node.right.find_kth(k - l - 1)
}
}
}
impl Node {
fn update(&mut self) {
assert!(self.sub == 0);
if let Some(v) = self.right.max() {
self.max = v;
} else {
self.max = self.val;
}
assert!(self.max >= self.val);
if let Some(v) = self.left.min() {
self.min = v;
} else {
self.min = self.val;
}
assert!(self.min <= self.val);
self.size = 1 + self.left.size() + self.right.size();
}
fn push(&mut self) {
let sub = self.sub;
self.sub = 0;
self.left.update(sub);
self.right.update(sub);
}
fn apply(&mut self, v: i64) {
self.sub += v;
self.val -= v;
self.max -= v;
self.min -= v;
}
fn take_left(&mut self) -> Tree {
let res = std::mem::take(&mut self.left);
self.update();
res
}
fn take_right(&mut self) -> Tree {
let res = std::mem::take(&mut self.right);
self.update();
res
}
}
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
fn rand_memory() -> usize {
Box::into_raw(Box::new("I hope this is a random number")) as usize
}
fn rand() -> usize {
static mut X: usize = 0;
unsafe {
if X == 0 {
X = rand_memory();
}
X ^= X << 13;
X ^= X >> 17;
X ^= X << 5;
X
}
}
fn shuffle<T>(a: &mut [T]) {
for i in 1..a.len() {
let p = rand() % (i + 1);
a.swap(i, p);
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 2028kb
input:
3 5 5 7 3 9 A 3 C 1 A 2 C 2 A 3
output:
3 4 -1
result:
ok 3 lines
Test #2:
score: -100
Runtime Error
input:
5 8 8 294 928 293 392 719 A 4 C 200 A 5 C 10 A 2 C 120 A 1 A 3
output:
294