QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#245970 | #6676. Computational Geometry | yiyiyi# | AC ✓ | 16ms | 4552kb | C++20 | 4.0kb | 2023-11-10 14:53:22 | 2023-11-10 14:53:24 |
Judging History
answer
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<bitset>
#include<set>
#define int long long
#define lowbit(x) x&(-x)
#define mp make_pair
#define rep(i,x,n) for(int i=x;i<=n;i++)
#define per(i,n,x) for(int i=n;i>=x;i--)
#define forE(i,x) for(int i=head[x];i;i=nxt[i])
#define pii pair<int,int>
#define fi first
#define se second
using namespace std;
const int maxn=1e6+5;
const int mod=998244353;
const int INF=1e9;
inline int read()
{
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9')
{
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9')
{
x=x*10+(c-'0');
c=getchar();
}
return x*f;
}
using point_t=int; //全局数据类型,可修改为 long long 等
constexpr point_t eps=0;
constexpr long double PI=3.1415926535897932384l;
// 点与向量
template<typename T> struct point
{
T x,y;
bool operator==(const point &a) const {return (abs(x-a.x)<=eps && abs(y-a.y)<=eps);}
bool operator<(const point &a) const {if (abs(x-a.x)<=eps) return y<a.y-eps; return x<a.x-eps;}
bool operator>(const point &a) const {return !(*this<a || *this==a);}
point operator+(const point &a) const {return {x+a.x,y+a.y};}
point operator-(const point &a) const {return {x-a.x,y-a.y};}
point operator-() const {return {-x,-y};}
point operator*(const T k) const {return {k*x,k*y};}
point operator/(const T k) const {return {x/k,y/k};}
T operator*(const point &a) const {return x*a.x+y*a.y;} // 点积
T operator^(const point &a) const {return x*a.y-y*a.x;} // 叉积,注意优先级
int toleft(const point &a) const {const auto t=(*this)^a; return (t>eps)-(t<-eps);} // 向量与向量的to-left 测试 1left -1right 0on
T len2() const {return (*this)*(*this);} // 向量长度的平方
T dis2(const point &a) const {return (a-(*this)).len2();} // 两点距离的平方
// 涉及浮点数
long double len() const {return sqrtl(len2());} // 向量长度
long double dis(const point &a) const {return sqrtl(dis2(a));} // 两点距离
long double ang(const point &a) const {return acosl(max(-1.0l,min(1.0l,((*this)*a)/(len()*a.len()))));} // 向量夹角
point rot(const long double rad) const {return {x*cos(rad)-y*sin(rad),x*sin(rad)+y*cos(rad)};} // 逆时针旋转(给定角度)
point rot(const long double cosr,const long double sinr) const {return {x*cosr-y*sinr,x*sinr+y*cosr};} // 逆时针旋转(给定角度的正弦与余弦)
};
using Point=point<point_t>;
// 多边形
template<typename T> struct polygon
{
vector<point<T>> p; // 以逆时针顺序存储
};
using Polygon=polygon<point_t>;
//凸多边形
template<typename T> struct convex: polygon<T>
{
};
using Convex=convex<point_t>;
int T;
signed main()
{
int T=read();
while(T--)
{
int n=read(),k=read();
Convex C;
C.p.resize(n+5);
rep(i,1,n) C.p[i]={read(),read()};
int l=1,r=k,now=0,pos=k+1;
int ans=0;
now+=C.p[n]^C.p[1];
rep(i,1,k-1) now+=C.p[i]^C.p[i+1];
for(;l<=n;l++)
{
int nxt=(r==n)?1:r+1;
int pre=(l==1)?n:l-1;
now-=C.p[pre]^C.p[l];
now+=C.p[r]^C.p[nxt];
if(pos==nxt) pos=(pos==n)?1:pos+1;
while(1)
{
Point v1=C.p[l]-C.p[pos],v2=C.p[nxt]-C.p[pos];
int nxtpos = (pos==n)?1:pos+1;
if(nxtpos==l) break;
Point v3=C.p[l]-C.p[nxtpos],v4=C.p[nxt]-C.p[nxtpos];
if(abs(v3^v4)>=abs(v1^v2)) pos=nxtpos;
else break;
}
Point v1=C.p[l]-C.p[pos],v2=C.p[nxt]-C.p[pos];
ans=max(ans,abs(v1^v2)+now+(C.p[nxt]^C.p[l]));
r=nxt;
}
printf("%.12Lf\n",(long double)(1.0*ans/2.0));
}
}
这程序好像有点Bug,我给组数据试试?
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 3920kb
input:
3 3 1 0 0 1 0 0 1 8 3 1 2 3 1 5 1 7 3 8 6 5 8 3 7 1 5 7 2 3 6 1 1 3 1 7 1 8 1 5 6 4 6
output:
0.500000000000 26.500000000000 20.000000000000
result:
ok 3 numbers
Test #2:
score: 0
Accepted
time: 0ms
memory: 3696kb
input:
1 4 2 -1000000000 -1000000000 1000000000 -1000000000 1000000000 1000000000 -1000000000 1000000000
output:
4000000000000000000.000000000000
result:
ok found '4000000000000000000.000000000', expected '4000000000000000000.000000000', error '0.000000000'
Test #3:
score: 0
Accepted
time: 13ms
memory: 3848kb
input:
14246 7 5 -999999980 -999999988 -999999979 -999999984 -999999978 -999999978 -999999979 -999999972 -1000000000 -999999998 -999999993 -1000000000 -999999984 -999999993 6 1 -999999987 -999999987 -999999993 -999999981 -999999998 -999999986 -1000000000 -999999996 -999999995 -1000000000 -999999986 -999999...
output:
230.500000000000 78.000000000000 173.000000000000 46.000000000000 161.500000000000 25.000000000000 224.000000000000 78.000000000000 42.000000000000 75.000000000000 113.500000000000 179.000000000000 227.000000000000 224.500000000000 459.500000000000 33.500000000000 323.000000000000 208.000000000000 1...
result:
ok 14246 numbers
Test #4:
score: 0
Accepted
time: 16ms
memory: 3700kb
input:
14244 6 4 -547850284 -481269250 -1000000000 -714647423 -533299247 -1000000000 656886478 -769438616 700263718 -430440203 106399420 -305601756 10 3 -466281822 506862192 -907094238 85058839 -1000000000 -281869646 -855490497 -478229011 -112167057 -1000000000 147495199 -983428035 704507845 -902383045 828...
output:
732791354437434368.000000000000 1492466916906283520.000000000000 1571608624804175360.000000000000 853722168331793664.000000000000 1841579555796117760.000000000000 186812625650844480.000000000000 1374931373816256512.000000000000 1396248766527417088.000000000000 300749428982044480.000000000000 1597680...
result:
ok 14244 numbers
Test #5:
score: 0
Accepted
time: 4ms
memory: 3900kb
input:
1000 100 84 -638427072 -696806030 -574275620 -741577840 -517724956 -779879773 -440790977 -831653888 -371696794 -867523797 -292070733 -904513365 -246157947 -920874374 -196125497 -936669098 -120139525 -960537360 -54479671 -978537127 -11534554 -987883373 26411313 -994847568 72263671 -1000000000 1168709...
output:
2901829084045602816.000000000000 327527198347053248.000000000000 1734256029955228928.000000000000 2416380865036326400.000000000000 935891084317887488.000000000000 2828414703961765376.000000000000 2101460694807832576.000000000000 2426931532374706176.000000000000 2679372534658023424.000000000000 27623...
result:
ok 1000 numbers
Test #6:
score: 0
Accepted
time: 7ms
memory: 3716kb
input:
100 1000 168 -808847262 -517721134 -803072067 -525448193 -798730847 -531136476 -796502549 -534032203 -791151313 -540928191 -786588703 -546785604 -782732315 -551644783 -780071973 -554976222 -774771946 -561591700 -769683918 -567839156 -769554831 -567997637 -766249149 -572042373 -759870835 -579831042 -...
output:
1028923552719996032.000000000000 2832301779860078592.000000000000 2848011247470070272.000000000000 2506790184987356672.000000000000 2622377875251076096.000000000000 2556381233480029184.000000000000 2780396909089778176.000000000000 1735531899101324032.000000000000 987263293126023936.000000000000 2933...
result:
ok 100 numbers
Test #7:
score: 0
Accepted
time: 7ms
memory: 4136kb
input:
10 10000 3930 374998960 871320826 374305646 871707307 373541784 872131442 372913079 872480119 372247815 872848960 372082544 872940283 371300533 873371391 370696772 873703715 369897687 874143282 369135422 874562333 368787728 874753324 368396307 874968013 367915968 875230945 367376687 875525844 367147...
output:
2095908706043761664.000000000000 2881509906421599232.000000000000 860651843537664128.000000000000 2225240521612313856.000000000000 911084696371304576.000000000000 2134470965837802240.000000000000 2924168382633125376.000000000000 1052994530795952384.000000000000 2555680635181519872.000000000000 27032...
result:
ok 10 numbers
Test #8:
score: 0
Accepted
time: 7ms
memory: 4552kb
input:
1 100000 91077 937469288 -231959258 937491476 -231891836 937502721 -231857664 937522226 -231798381 937545631 -231727224 937556752 -231693411 937581626 -231617767 937594048 -231579990 937605611 -231544822 937620487 -231499574 937644936 -231425160 937656870 -231388830 937680141 -231317975 937699154 -2...
output:
2889987064399269888.000000000000
result:
ok found '2889987064399269888.000000000', expected '2889987064399269888.000000000', error '0.000000000'