QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#245565 | #7767. 数据结构 | hos_lyric# | 10 | 49ms | 5084kb | C++14 | 18.0kb | 2023-11-10 02:08:25 | 2024-07-04 02:24:10 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
// T: monoid representing information of an interval.
// T() should return the identity.
// T(S s) should represent a single element of the array.
// T::push(T &l, T &r) should push the lazy update.
// T::pull(const T &l, const T &r) should pull two intervals.
template <class T> struct SegmentTreeRange {
int logN, n;
vector<T> ts;
SegmentTreeRange() : logN(0), n(0) {}
explicit SegmentTreeRange(int n_) {
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
}
template <class S> explicit SegmentTreeRange(const vector<S> &ss) {
const int n_ = ss.size();
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
for (int i = 0; i < n_; ++i) at(i) = T(ss[i]);
build();
}
T &at(int i) {
return ts[n + i];
}
void build() {
for (int u = n; --u; ) pull(u);
}
inline void push(int u) {
ts[u].push(ts[u << 1], ts[u << 1 | 1]);
}
inline void pull(int u) {
ts[u].pull(ts[u << 1], ts[u << 1 | 1]);
}
// Applies T::f(args...) to [a, b).
template <class F, class... Args>
void ch(int a, int b, F f, Args &&... args) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return;
a += n; b += n;
for (int h = logN; h; --h) {
const int aa = a >> h, bb = b >> h;
if (aa == bb) {
if ((aa << h) != a || (bb << h) != b) push(aa);
} else {
if ((aa << h) != a) push(aa);
if ((bb << h) != b) push(bb);
}
}
for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
if (aa & 1) (ts[aa++].*f)(args...);
if (bb & 1) (ts[--bb].*f)(args...);
}
for (int h = 1; h <= logN; ++h) {
const int aa = a >> h, bb = b >> h;
if (aa == bb) {
if ((aa << h) != a || (bb << h) != b) pull(aa);
} else {
if ((aa << h) != a) pull(aa);
if ((bb << h) != b) pull(bb);
}
}
}
// Calculates the product for [a, b).
T get(int a, int b) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return T();
a += n; b += n;
for (int h = logN; h; --h) {
const int aa = a >> h, bb = b >> h;
if (aa == bb) {
if ((aa << h) != a || (bb << h) != b) push(aa);
} else {
if ((aa << h) != a) push(aa);
if ((bb << h) != b) push(bb);
}
}
T prodL, prodR, t;
for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
if (aa & 1) { t.pull(prodL, ts[aa++]); prodL = t; }
if (bb & 1) { t.pull(ts[--bb], prodR); prodR = t; }
}
t.pull(prodL, prodR);
return t;
}
// Calculates T::f(args...) of a monoid type for [a, b).
// op(-, -) should calculate the product.
// e() should return the identity.
template <class Op, class E, class F, class... Args>
#if __cplusplus >= 201402L
auto
#else
decltype((std::declval<T>().*F())())
#endif
get(int a, int b, Op op, E e, F f, Args &&... args) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return e();
a += n; b += n;
for (int h = logN; h; --h) {
const int aa = a >> h, bb = b >> h;
if (aa == bb) {
if ((aa << h) != a || (bb << h) != b) push(aa);
} else {
if ((aa << h) != a) push(aa);
if ((bb << h) != b) push(bb);
}
}
auto prodL = e(), prodR = e();
for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
if (aa & 1) prodL = op(prodL, (ts[aa++].*f)(args...));
if (bb & 1) prodR = op((ts[--bb].*f)(args...), prodR);
}
return op(prodL, prodR);
}
// Find min b s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from left to right.
// Returns n + 1 if there is no such b.
template <class F, class... Args>
int findRight(int a, F f, Args &&... args) {
assert(0 <= a); assert(a <= n);
if ((T().*f)(args...)) return a;
if (a == n) return n + 1;
a += n;
for (int h = logN; h; --h) push(a >> h);
for (; ; a >>= 1) if (a & 1) {
if ((ts[a].*f)(args...)) {
for (; a < n; ) {
push(a);
if (!(ts[a <<= 1].*f)(args...)) ++a;
}
return a - n + 1;
}
++a;
if (!(a & (a - 1))) return n + 1;
}
}
// Find max a s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from right to left.
// Returns -1 if there is no such a.
template <class F, class... Args>
int findLeft(int b, F f, Args &&... args) {
assert(0 <= b); assert(b <= n);
if ((T().*f)(args...)) return b;
if (b == 0) return -1;
b += n;
for (int h = logN; h; --h) push((b - 1) >> h);
for (; ; b >>= 1) if ((b & 1) || b == 2) {
if ((ts[b - 1].*f)(args...)) {
for (; b <= n; ) {
push(b - 1);
if (!(ts[(b <<= 1) - 1].*f)(args...)) --b;
}
return b - n - 1;
}
--b;
if (!(b & (b - 1))) return -1;
}
}
};
////////////////////////////////////////////////////////////////////////////////
struct Hld {
int n, rt;
// needs to be tree
// vertex lists
// modified in build(rt) (parent removed, heavy child first)
vector<vector<int>> graph;
vector<int> sz, par, dep;
int zeit;
vector<int> dis, fin, sid;
// head vertex (minimum depth) in heavy path
vector<int> head;
Hld() : n(0), rt(-1), zeit(0) {}
explicit Hld(int n_) : n(n_), rt(-1), graph(n), zeit(0) {}
void ae(int u, int v) {
assert(0 <= u); assert(u < n);
assert(0 <= v); assert(v < n);
graph[u].push_back(v);
graph[v].push_back(u);
}
void dfsSz(int u) {
sz[u] = 1;
for (const int v : graph[u]) {
auto it = std::find(graph[v].begin(), graph[v].end(), u);
if (it != graph[v].end()) graph[v].erase(it);
par[v] = u;
dep[v] = dep[u] + 1;
dfsSz(v);
sz[u] += sz[v];
}
}
void dfsHld(int u) {
dis[u] = zeit++;
const int deg = graph[u].size();
if (deg > 0) {
int vm = graph[u][0];
int jm = 0;
for (int j = 1; j < deg; ++j) {
const int v = graph[u][j];
if (sz[vm] < sz[v]) {
vm = v;
jm = j;
}
}
swap(graph[u][0], graph[u][jm]);
head[vm] = head[u];
dfsHld(vm);
for (int j = 1; j < deg; ++j) {
const int v = graph[u][j];
head[v] = v;
dfsHld(v);
}
}
fin[u] = zeit;
}
void build(int rt_) {
assert(0 <= rt_); assert(rt_ < n);
rt = rt_;
sz.assign(n, 0);
par.assign(n, -1);
dep.assign(n, -1);
dep[rt] = 0;
dfsSz(rt);
zeit = 0;
dis.assign(n, -1);
fin.assign(n, -1);
head.assign(n, -1);
head[rt] = rt;
dfsHld(rt);
assert(zeit == n);
sid.assign(n, -1);
for (int u = 0; u < n; ++u) sid[dis[u]] = u;
}
friend ostream &operator<<(ostream &os, const Hld &hld) {
const int maxDep = *max_element(hld.dep.begin(), hld.dep.end());
vector<string> ss(2 * maxDep + 1);
int pos = 0, maxPos = 0;
for (int j = 0; j < hld.n; ++j) {
const int u = hld.sid[j];
const int d = hld.dep[u];
if (hld.head[u] == u) {
if (j != 0) {
pos = maxPos + 1;
ss[2 * d - 1].resize(pos, '-');
ss[2 * d - 1] += '+';
}
} else {
ss[2 * d - 1].resize(pos, ' ');
ss[2 * d - 1] += '|';
}
ss[2 * d].resize(pos, ' ');
ss[2 * d] += std::to_string(u);
if (maxPos < static_cast<int>(ss[2 * d].size())) {
maxPos = ss[2 * d].size();
}
}
for (int d = 0; d <= 2 * maxDep; ++d) os << ss[d] << '\n';
return os;
}
bool contains(int u, int v) const {
return (dis[u] <= dis[v] && dis[v] < fin[u]);
}
int lca(int u, int v) const {
assert(0 <= u); assert(u < n);
assert(0 <= v); assert(v < n);
for (; head[u] != head[v]; ) (dis[u] > dis[v]) ? (u = par[head[u]]) : (v = par[head[v]]);
return (dis[u] > dis[v]) ? v : u;
}
int jumpUp(int u, int d) const {
assert(0 <= u); assert(u < n);
assert(d >= 0);
if (dep[u] < d) return -1;
const int tar = dep[u] - d;
for (u = head[u]; ; u = head[par[u]]) {
if (dep[u] <= tar) return sid[dis[u] + (tar - dep[u])];
}
}
int jump(int u, int v, int d) const {
assert(0 <= u); assert(u < n);
assert(0 <= v); assert(v < n);
assert(d >= 0);
const int l = lca(u, v);
const int du = dep[u] - dep[l], dv = dep[v] - dep[l];
if (d <= du) {
return jumpUp(u, d);
} else if (d <= du + dv) {
return jumpUp(v, du + dv - d);
} else {
return -1;
}
}
// [u, v) or [u, v]
template <class F> void doPathUp(int u, int v, bool inclusive, F f) const {
assert(contains(v, u));
for (; head[u] != head[v]; u = par[head[u]]) f(dis[head[u]], dis[u] + 1);
if (inclusive) {
f(dis[v], dis[u] + 1);
} else {
if (v != u) f(dis[v] + 1, dis[u] + 1);
}
}
// not path order, include lca(u, v) or not
template <class F> void doPath(int u, int v, bool inclusive, F f) const {
const int l = lca(u, v);
doPathUp(u, l, false, f);
doPathUp(v, l, inclusive, f);
}
// (vs, ps): compressed tree
// vs: DFS order (sorted by dis)
// vs[ps[x]]: the parent of vs[x]
// ids[vs[x]] = x, not set for non-tree vertex
vector<int> ids;
pair<vector<int>, vector<int>> compress(vector<int> us) {
// O(n) first time
ids.resize(n, -1);
std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
return (dis[u] < dis[v]);
});
us.erase(std::unique(us.begin(), us.end()), us.end());
int usLen = us.size();
assert(usLen >= 1);
for (int x = 1; x < usLen; ++x) us.push_back(lca(us[x - 1], us[x]));
std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
return (dis[u] < dis[v]);
});
us.erase(std::unique(us.begin(), us.end()), us.end());
usLen = us.size();
for (int x = 0; x < usLen; ++x) ids[us[x]] = x;
vector<int> ps(usLen, -1);
for (int x = 1; x < usLen; ++x) ps[x] = ids[lca(us[x - 1], us[x])];
return make_pair(us, ps);
}
};
////////////////////////////////////////////////////////////////////////////////
template <class T> struct NodeSum {
int sz;
T sum;
T lz;
NodeSum() : sz(0), sum(0), lz(0) {}
NodeSum(const T &val) : sz(1), sum(val), lz(0) {}
void push(NodeSum &l, NodeSum &r) {
l.add(lz);
r.add(lz);
lz = 0;
}
void pull(const NodeSum &l, const NodeSum &r) {
sz = l.sz + r.sz;
sum = l.sum + r.sum;
}
void add(const T &val) {
sum += val * sz;
lz += val;
}
T getSum() const {
return sum;
}
bool accSum(T &acc, const T &tar) const {
if (acc + sum >= tar) return true;
acc += sum;
return false;
}
};
template <class T> T getSum(SegmentTreeRange<NodeSum<T>> &seg, int a, int b) {
return seg.get(a, b,
[&](const T &l, const T &r) -> T { return l + r; },
[&]() -> T { return 0; },
&NodeSum<T>::getSum);
}
using U = unsigned long long;
int N, Q;
vector<int> A, B;
vector<int> O, X, Y, K;
vector<U> V;
Hld hld;
namespace brute {
vector<int> on;
vector<U> as;
U sum;
vector<int> vis;
void dfs(int u, int k, U val) {
if (!vis[u]) {
vis[u] = 1;
sum += as[u] += val;
if (k) {
const int p = hld.par[u];
if (~p && !on[p]) {
dfs(p, k - 1, val);
}
for (const int v : hld.graph[u]) if (!on[v]) {
dfs(v, k - 1, val);
}
}
}
}
vector<U> run() {
cerr<<"[brute::run]"<<endl;
on.assign(N, 0);
as.assign(N, 0);
vector<U> anss;
for (int q = 0; q < Q; ++q) {
vector<int> us;
if (O[q] == 1 || O[q] == 3) {
hld.doPath(X[q], Y[q], true, [&](int l, int r) -> void {
for (int j = l; j < r; ++j) us.push_back(hld.sid[j]);
});
}
for (const int u : us) on[u] = 1;
sum = 0;
vis.assign(N, 0);
for (const int u : us) dfs(u, K[q], V[q]);
// cerr<<"on = "<<on<<", us = "<<us<<", as = "<<as<<", sum = "<<sum<<endl;
if (O[q] == 1) {
//
} else if (O[q] == 2) {
for (int j = hld.dis[X[q]]; j < hld.fin[X[q]]; ++j) as[hld.sid[j]] += V[q];
} else if (O[q] == 3) {
anss.push_back(sum);
} else if (O[q] == 4) {
U ans = 0;
for (int j = hld.dis[X[q]]; j < hld.fin[X[q]]; ++j) ans += as[hld.sid[j]];
anss.push_back(ans);
} else {
assert(false);
}
for (const int u : us) on[u] = 0;
}
return anss;
}
} // brute
namespace sub2 {
vector<U> run() {
cerr<<"[sub2::run]"<<endl;
SegmentTreeRange<NodeSum<U>> seg(vector<U>(N, 0));
vector<U> anss;
for (int q = 0; q < Q; ++q) {
if (O[q] == 1) {
int x = X[q], y = Y[q];
if (x > y) swap(x, y);
x = max(x - K[q], 0);
y = min(y + K[q], N - 1);
hld.doPath(x, y, true, [&](int l, int r) -> void {
seg.ch(l, r, &NodeSum<U>::add, V[q]);
});
} else if (O[q] == 2) {
seg.ch(hld.dis[X[q]], hld.fin[X[q]], &NodeSum<U>::add, V[q]);
} else if (O[q] == 3) {
int x = X[q], y = Y[q];
if (x > y) swap(x, y);
x = max(x - K[q], 0);
y = min(y + K[q], N - 1);
U ans = 0;
hld.doPath(x, y, true, [&](int l, int r) -> void {
ans += getSum(seg, l, r);
});
anss.push_back(ans);
} else if (O[q] == 4) {
const U ans = getSum(seg, hld.dis[X[q]], hld.fin[X[q]]);
anss.push_back(ans);
} else {
assert(false);
}
}
return anss;
}
} // sub2
namespace sub5 {
int lss[200'010][4], rss[200'010][4];
vector<U> run() {
cerr<<"[sub5::run]"<<endl;
vector<int> ids(N, -1);
vector<int> que;
que.push_back(0);
for (int j = 0; j < N; ++j) {
const int u = que[j];
ids[u] = j;
for (const int v : hld.graph[u]) {
que.push_back(v);
}
}
for (int u = 0; u < N; ++u) {
fill(lss[u], lss[u] + 4, N);
fill(rss[u], rss[u] + 4, 0);
}
for (int u = 0; u < N; ++u) {
int v = u;
for (int k = 0; k < 4; ++k) {
chmin(lss[v][k], ids[u]);
chmax(rss[v][k], ids[u] + 1);
v = hld.par[v];
if (!~v) break;
}
}
// cerr<<"que = "<<que<<endl;
// for(int u=0;u<N;++u){pv(lss[u],lss[u]+4);pv(rss[u],rss[u]+4);}
SegmentTreeRange<NodeSum<U>> seg(vector<U>(N, 0));
vector<U> anss;
for (int q = 0; q < Q; ++q) {
vector<pair<int, int>> ps;
auto add = [&](int l, int r) -> void {
if (l <= r) {
ps.emplace_back(l, r);
}
};
{
int u = X[q];
for (int k = 0; ; ++k) {
add(lss[u][K[q] - k], rss[u][K[q] - k]);
if (k == K[q]) break;
add(lss[u][K[q] - k - 1], rss[u][K[q] - k - 1]);
u = hld.par[u];
if (!~u) break;
}
}
// cerr<<X[q]<<" "<<K[q]<<": ps = "<<ps<<endl;
if (O[q] == 1) {
for (const auto &p : ps) {
seg.ch(p.first, p.second, &NodeSum<U>::add, V[q]);
}
} else {
U ans = 0;
for (const auto &p : ps) {
ans += getSum(seg, p.first, p.second);
}
anss.push_back(ans);
}
}
return anss;
}
} // sub5
int main() {
for (; ~scanf("%d%d", &N, &Q); ) {
A.resize(N - 1);
B.resize(N - 1);
for (int i = 0; i < N - 1; ++i) {
scanf("%d%d", &A[i], &B[i]);
--A[i];
--B[i];
}
O.assign(Q, -1);
X.assign(Q, -1);
Y.assign(Q, -1);
K.assign(Q, -1);
V.assign(Q, 0);
for (int q = 0; q < Q; ++q) {
scanf("%d", &O[q]);
if (O[q] == 1) {
scanf("%d%d%d%llu", &X[q], &Y[q], &K[q], &V[q]);
--X[q];
--Y[q];
} else if (O[q] == 2) {
scanf("%d%llu", &X[q], &V[q]);
--X[q];
} else if (O[q] == 3) {
scanf("%d%d%d", &X[q], &Y[q], &K[q]);
--X[q];
--Y[q];
} else if (O[q] == 4) {
scanf("%d", &X[q]);
--X[q];
} else {
assert(false);
}
}
hld = Hld(N);
for (int i = 0; i < N - 1; ++i) {
hld.ae(A[i], B[i]);
}
hld.build(0);
// cerr<<hld<<endl;
bool spe2 = true;
for (int q = 0; q < Q; ++q) if (O[q] == 1 || O[q] == 3) spe2 = spe2 && (K[q] == 0);
bool spe3 = true;
for (int u = 1; u < N; ++u) spe3 = spe3 && (hld.par[u] == u - 1);
bool spe5 = true;
for (int q = 0; q < Q; ++q) spe5 = spe5 && ((O[q] == 1 || O[q] == 3) && X[q] == Y[q]);
vector<U> anss;
if (N <= 5000 && Q <= 5000) {
anss = brute::run();
} else if (spe2 || spe3) {
anss = sub2::run();
} else if (spe5) {
anss = sub5::run();
} else {
assert(false);
}
for (const U ans : anss) {
printf("%llu\n", ans);
}
}
return 0;
}
詳細信息
Subtask #1:
score: 10
Accepted
Test #1:
score: 10
Accepted
time: 49ms
memory: 5084kb
input:
5000 5000 1 2 2 3 3 4 4 5 5 6 5 7 6 8 7 9 9 10 8 11 11 12 12 13 12 14 14 15 15 16 16 17 16 18 18 19 18 20 20 21 20 22 22 23 23 24 23 25 23 26 26 27 27 28 28 29 27 30 30 31 29 32 32 33 33 34 32 35 35 36 36 37 35 38 36 39 38 40 38 41 41 42 42 43 43 44 42 45 44 46 45 47 47 48 48 49 48 50 49 51 51 52 52...
output:
37227703492 2136305359188 2794367845468 1309925069860 1698169768858 2678958746332 6690595071246 2087826052960 5786332239171 2186592622 4014965079076 1674542130 6524658548 7094033144666 10065416610040 11589693473717 492570862 3356228199498 2834694279 4198036633070 4395772262 4221137767 9630829210 992...
result:
ok 2559 numbers
Test #2:
score: 0
Accepted
time: 22ms
memory: 4548kb
input:
5000 5000 54 2 1945 3 4131 4 1207 5 3558 6 3582 7 1648 8 3498 9 1761 10 360 11 3617 12 4359 13 158 14 2314 15 529 16 4619 17 1070 18 1504 19 2675 20 2981 21 2142 22 1349 23 1640 24 1374 25 4059 26 2511 27 2708 28 2939 29 3017 30 3320 31 4602 32 4779 33 2697 34 3906 35 1121 36 197 37 1551 38 1119 39 ...
output:
0 198262395 0 0 1595057854 0 0 39277179818 13451201574 21469030838 0 0 23554220364 19140694248 212211615641 0 0 0 0 0 86500798 60136122614 47351162248 0 0 306346383502 230306838988 0 170207438 471673864986 387605196674 0 0 0 688392707 115968801311 199501119668 168720065378 634329317954 0 0 155717506...
result:
ok 2456 numbers
Subtask #2:
score: 0
Judgement Failed
Test #3:
score: 0
Judgement Failed
input:
200000 200000 1 2 1 3 1 4 3 5 1 6 1 7 7 8 8 9 2 10 1 11 5 12 1 13 7 14 10 15 2 16 7 17 11 18 5 19 5 20 1 21 16 22 1 23 3 24 20 25 14 26 2 27 6 28 15 29 10 30 15 31 5 32 13 33 12 34 31 35 31 36 36 37 36 38 1 39 28 40 5 41 12 42 41 43 20 44 30 45 22 46 11 47 47 48 45 49 14 50 41 51 3 52 30 53 29 54 6 ...
output:
result:
Subtask #3:
score: 0
Judgement Failed
Test #5:
score: 0
Judgement Failed
input:
200000 200000 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50 51 51 ...
output:
result:
Subtask #4:
score: 0
Judgement Failed
Test #7:
score: 0
Judgement Failed
input:
200000 200000 1 2 2 3 3 4 1 5 3 6 5 7 5 8 7 9 2 10 7 11 11 12 10 13 6 14 3 15 14 16 4 17 11 18 3 19 14 20 4 21 4 22 12 23 18 24 5 25 5 26 14 27 13 28 24 29 11 30 26 31 29 32 28 33 31 34 23 35 33 36 6 37 11 38 22 39 13 40 35 41 37 42 21 43 12 44 4 45 16 46 12 47 21 48 1 49 26 50 45 51 41 52 46 53 7 5...
output:
result:
Subtask #5:
score: 0
Skipped
Dependency #4:
0%
Subtask #6:
score: 0
Skipped
Dependency #4:
0%
Subtask #7:
score: 0
Skipped
Dependency #2:
0%
Subtask #8:
score: 0
Skipped
Dependency #1:
100%
Accepted
Dependency #2:
0%