QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#245555#7767. 数据结构hos_lyric#15 294ms63420kbC++1416.1kb2023-11-10 01:33:452024-07-04 02:24:05

Judging History

你现在查看的是最新测评结果

  • [2024-07-04 02:24:05]
  • 评测
  • 测评结果:15
  • 用时:294ms
  • 内存:63420kb
  • [2023-11-10 01:33:45]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")


// T: monoid representing information of an interval.
//   T()  should return the identity.
//   T(S s)  should represent a single element of the array.
//   T::push(T &l, T &r)  should push the lazy update.
//   T::pull(const T &l, const T &r)  should pull two intervals.
template <class T> struct SegmentTreeRange {
  int logN, n;
  vector<T> ts;
  SegmentTreeRange() : logN(0), n(0) {}
  explicit SegmentTreeRange(int n_) {
    for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
    ts.resize(n << 1);
  }
  template <class S> explicit SegmentTreeRange(const vector<S> &ss) {
    const int n_ = ss.size();
    for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
    ts.resize(n << 1);
    for (int i = 0; i < n_; ++i) at(i) = T(ss[i]);
    build();
  }
  T &at(int i) {
    return ts[n + i];
  }
  void build() {
    for (int u = n; --u; ) pull(u);
  }

  inline void push(int u) {
    ts[u].push(ts[u << 1], ts[u << 1 | 1]);
  }
  inline void pull(int u) {
    ts[u].pull(ts[u << 1], ts[u << 1 | 1]);
  }

  // Applies T::f(args...) to [a, b).
  template <class F, class... Args>
  void ch(int a, int b, F f, Args &&... args) {
    assert(0 <= a); assert(a <= b); assert(b <= n);
    if (a == b) return;
    a += n; b += n;
    for (int h = logN; h; --h) {
      const int aa = a >> h, bb = b >> h;
      if (aa == bb) {
        if ((aa << h) != a || (bb << h) != b) push(aa);
      } else {
        if ((aa << h) != a) push(aa);
        if ((bb << h) != b) push(bb);
      }
    }
    for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
      if (aa & 1) (ts[aa++].*f)(args...);
      if (bb & 1) (ts[--bb].*f)(args...);
    }
    for (int h = 1; h <= logN; ++h) {
      const int aa = a >> h, bb = b >> h;
      if (aa == bb) {
        if ((aa << h) != a || (bb << h) != b) pull(aa);
      } else {
        if ((aa << h) != a) pull(aa);
        if ((bb << h) != b) pull(bb);
      }
    }
  }

  // Calculates the product for [a, b).
  T get(int a, int b) {
    assert(0 <= a); assert(a <= b); assert(b <= n);
    if (a == b) return T();
    a += n; b += n;
    for (int h = logN; h; --h) {
      const int aa = a >> h, bb = b >> h;
      if (aa == bb) {
        if ((aa << h) != a || (bb << h) != b) push(aa);
      } else {
        if ((aa << h) != a) push(aa);
        if ((bb << h) != b) push(bb);
      }
    }
    T prodL, prodR, t;
    for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
      if (aa & 1) { t.pull(prodL, ts[aa++]); prodL = t; }
      if (bb & 1) { t.pull(ts[--bb], prodR); prodR = t; }
    }
    t.pull(prodL, prodR);
    return t;
  }

  // Calculates T::f(args...) of a monoid type for [a, b).
  //   op(-, -)  should calculate the product.
  //   e()  should return the identity.
  template <class Op, class E, class F, class... Args>
#if __cplusplus >= 201402L
  auto
#else
  decltype((std::declval<T>().*F())())
#endif
  get(int a, int b, Op op, E e, F f, Args &&... args) {
    assert(0 <= a); assert(a <= b); assert(b <= n);
    if (a == b) return e();
    a += n; b += n;
    for (int h = logN; h; --h) {
      const int aa = a >> h, bb = b >> h;
      if (aa == bb) {
        if ((aa << h) != a || (bb << h) != b) push(aa);
      } else {
        if ((aa << h) != a) push(aa);
        if ((bb << h) != b) push(bb);
      }
    }
    auto prodL = e(), prodR = e();
    for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
      if (aa & 1) prodL = op(prodL, (ts[aa++].*f)(args...));
      if (bb & 1) prodR = op((ts[--bb].*f)(args...), prodR);
    }
    return op(prodL, prodR);
  }

  // Find min b s.t. T::f(args...) returns true,
  // when called for the partition of [a, b) from left to right.
  //   Returns n + 1 if there is no such b.
  template <class F, class... Args>
  int findRight(int a, F f, Args &&... args) {
    assert(0 <= a); assert(a <= n);
    if ((T().*f)(args...)) return a;
    if (a == n) return n + 1;
    a += n;
    for (int h = logN; h; --h) push(a >> h);
    for (; ; a >>= 1) if (a & 1) {
      if ((ts[a].*f)(args...)) {
        for (; a < n; ) {
          push(a);
          if (!(ts[a <<= 1].*f)(args...)) ++a;
        }
        return a - n + 1;
      }
      ++a;
      if (!(a & (a - 1))) return n + 1;
    }
  }

  // Find max a s.t. T::f(args...) returns true,
  // when called for the partition of [a, b) from right to left.
  //   Returns -1 if there is no such a.
  template <class F, class... Args>
  int findLeft(int b, F f, Args &&... args) {
    assert(0 <= b); assert(b <= n);
    if ((T().*f)(args...)) return b;
    if (b == 0) return -1;
    b += n;
    for (int h = logN; h; --h) push((b - 1) >> h);
    for (; ; b >>= 1) if ((b & 1) || b == 2) {
      if ((ts[b - 1].*f)(args...)) {
        for (; b <= n; ) {
          push(b - 1);
          if (!(ts[(b <<= 1) - 1].*f)(args...)) --b;
        }
        return b - n - 1;
      }
      --b;
      if (!(b & (b - 1))) return -1;
    }
  }
};

////////////////////////////////////////////////////////////////////////////////


struct Hld {
  int n, rt;
  // needs to be tree
  // vertex lists
  // modified in build(rt) (parent removed, heavy child first)
  vector<vector<int>> graph;
  vector<int> sz, par, dep;
  int zeit;
  vector<int> dis, fin, sid;
  // head vertex (minimum depth) in heavy path
  vector<int> head;

  Hld() : n(0), rt(-1), zeit(0) {}
  explicit Hld(int n_) : n(n_), rt(-1), graph(n), zeit(0) {}
  void ae(int u, int v) {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    graph[u].push_back(v);
    graph[v].push_back(u);
  }

  void dfsSz(int u) {
    sz[u] = 1;
    for (const int v : graph[u]) {
      auto it = std::find(graph[v].begin(), graph[v].end(), u);
      if (it != graph[v].end()) graph[v].erase(it);
      par[v] = u;
      dep[v] = dep[u] + 1;
      dfsSz(v);
      sz[u] += sz[v];
    }
  }
  void dfsHld(int u) {
    dis[u] = zeit++;
    const int deg = graph[u].size();
    if (deg > 0) {
      int vm = graph[u][0];
      int jm = 0;
      for (int j = 1; j < deg; ++j) {
        const int v = graph[u][j];
        if (sz[vm] < sz[v]) {
          vm = v;
          jm = j;
        }
      }
      swap(graph[u][0], graph[u][jm]);
      head[vm] = head[u];
      dfsHld(vm);
      for (int j = 1; j < deg; ++j) {
        const int v = graph[u][j];
        head[v] = v;
        dfsHld(v);
      }
    }
    fin[u] = zeit;
  }
  void build(int rt_) {
    assert(0 <= rt_); assert(rt_ < n);
    rt = rt_;
    sz.assign(n, 0);
    par.assign(n, -1);
    dep.assign(n, -1);
    dep[rt] = 0;
    dfsSz(rt);
    zeit = 0;
    dis.assign(n, -1);
    fin.assign(n, -1);
    head.assign(n, -1);
    head[rt] = rt;
    dfsHld(rt);
    assert(zeit == n);
    sid.assign(n, -1);
    for (int u = 0; u < n; ++u) sid[dis[u]] = u;
  }

  friend ostream &operator<<(ostream &os, const Hld &hld) {
    const int maxDep = *max_element(hld.dep.begin(), hld.dep.end());
    vector<string> ss(2 * maxDep + 1);
    int pos = 0, maxPos = 0;
    for (int j = 0; j < hld.n; ++j) {
      const int u = hld.sid[j];
      const int d = hld.dep[u];
      if (hld.head[u] == u) {
        if (j != 0) {
          pos = maxPos + 1;
          ss[2 * d - 1].resize(pos, '-');
          ss[2 * d - 1] += '+';
        }
      } else {
        ss[2 * d - 1].resize(pos, ' ');
        ss[2 * d - 1] += '|';
      }
      ss[2 * d].resize(pos, ' ');
      ss[2 * d] += std::to_string(u);
      if (maxPos < static_cast<int>(ss[2 * d].size())) {
        maxPos = ss[2 * d].size();
      }
    }
    for (int d = 0; d <= 2 * maxDep; ++d) os << ss[d] << '\n';
    return os;
  }

  bool contains(int u, int v) const {
    return (dis[u] <= dis[v] && dis[v] < fin[u]);
  }
  int lca(int u, int v) const {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    for (; head[u] != head[v]; ) (dis[u] > dis[v]) ? (u = par[head[u]]) : (v = par[head[v]]);
    return (dis[u] > dis[v]) ? v : u;
  }
  int jumpUp(int u, int d) const {
    assert(0 <= u); assert(u < n);
    assert(d >= 0);
    if (dep[u] < d) return -1;
    const int tar = dep[u] - d;
    for (u = head[u]; ; u = head[par[u]]) {
      if (dep[u] <= tar) return sid[dis[u] + (tar - dep[u])];
    }
  }
  int jump(int u, int v, int d) const {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    assert(d >= 0);
    const int l = lca(u, v);
    const int du = dep[u] - dep[l], dv = dep[v] - dep[l];
    if (d <= du) {
      return jumpUp(u, d);
    } else if (d <= du + dv) {
      return jumpUp(v, du + dv - d);
    } else {
      return -1;
    }
  }
  // [u, v) or [u, v]
  template <class F> void doPathUp(int u, int v, bool inclusive, F f) const {
    assert(contains(v, u));
    for (; head[u] != head[v]; u = par[head[u]]) f(dis[head[u]], dis[u] + 1);
    if (inclusive) {
      f(dis[v], dis[u] + 1);
    } else {
      if (v != u) f(dis[v] + 1, dis[u] + 1);
    }
  }
  // not path order, include lca(u, v) or not
  template <class F> void doPath(int u, int v, bool inclusive, F f) const {
    const int l = lca(u, v);
    doPathUp(u, l, false, f);
    doPathUp(v, l, inclusive, f);
  }

  // (vs, ps): compressed tree
  // vs: DFS order (sorted by dis)
  // vs[ps[x]]: the parent of vs[x]
  // ids[vs[x]] = x, not set for non-tree vertex
  vector<int> ids;
  pair<vector<int>, vector<int>> compress(vector<int> us) {
    // O(n) first time
    ids.resize(n, -1);
    std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
      return (dis[u] < dis[v]);
    });
    us.erase(std::unique(us.begin(), us.end()), us.end());
    int usLen = us.size();
    assert(usLen >= 1);
    for (int x = 1; x < usLen; ++x) us.push_back(lca(us[x - 1], us[x]));
    std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
      return (dis[u] < dis[v]);
    });
    us.erase(std::unique(us.begin(), us.end()), us.end());
    usLen = us.size();
    for (int x = 0; x < usLen; ++x) ids[us[x]] = x;
    vector<int> ps(usLen, -1);
    for (int x = 1; x < usLen; ++x) ps[x] = ids[lca(us[x - 1], us[x])];
    return make_pair(us, ps);
  }
};

////////////////////////////////////////////////////////////////////////////////


template <class T> struct NodeSum {
  int sz;
  T sum;
  T lz;
  NodeSum() : sz(0), sum(0), lz(0) {}
  NodeSum(const T &val) : sz(1), sum(val), lz(0) {}
  void push(NodeSum &l, NodeSum &r) {
    l.add(lz);
    r.add(lz);
    lz = 0;
  }
  void pull(const NodeSum &l, const NodeSum &r) {
    sz = l.sz + r.sz;
    sum = l.sum + r.sum;
  }
  void add(const T &val) {
    sum += val * sz;
    lz += val;
  }
  T getSum() const {
    return sum;
  }
  bool accSum(T &acc, const T &tar) const {
    if (acc + sum >= tar) return true;
    acc += sum;
    return false;
  }
};

template <class T> T getSum(SegmentTreeRange<NodeSum<T>> &seg, int a, int b) {
  return seg.get(a, b,
                 [&](const T &l, const T &r) -> T { return l + r; },
                 [&]() -> T { return 0; },
                 &NodeSum<T>::getSum);
}


using U = unsigned long long;

int N, Q;
vector<int> A, B;
vector<int> O, X, Y, K;
vector<U> V;

Hld hld;


namespace brute {
vector<int> on;
vector<U> as;
U sum;
void dfs(int u, int k, U val) {
  sum += as[u] += val;
  if (k) {
    const int p = hld.par[u];
    if (~p && !on[p]) {
      dfs(p, k - 1, val);
    }
    for (const int v : hld.graph[u]) if (!on[v]) {
      dfs(v, k - 1, val);
    }
  }
}

vector<U> run() {
cerr<<"[brute::run]"<<endl;
  on.assign(N, 0);
  as.assign(N, 0);
  vector<U> anss;
  for (int q = 0; q < Q; ++q) {
    vector<int> us;
    if (O[q] == 1 || O[q] == 3) {
      hld.doPath(X[q], Y[q], true, [&](int l, int r) -> void {
        for (int j = l; j < r; ++j) us.push_back(hld.sid[j]);
      });
    }
    for (const int u : us) on[u] = 1;
    sum = 0;
    for (const int u : us) dfs(u, K[q], V[q]);
// cerr<<"on = "<<on<<", us = "<<us<<", as = "<<as<<", sum = "<<sum<<endl;
    if (O[q] == 1) {
      //
    } else if (O[q] == 2) {
      for (int j = hld.dis[X[q]]; j < hld.fin[X[q]]; ++j) as[hld.sid[j]] += V[q];
    } else if (O[q] == 3) {
      anss.push_back(sum);
    } else if (O[q] == 4) {
      U ans = 0;
      for (int j = hld.dis[X[q]]; j < hld.fin[X[q]]; ++j) ans += as[hld.sid[j]];
      anss.push_back(ans);
    } else {
      assert(false);
    }
    for (const int u : us) on[u] = 0;
  }
  return anss;
}
}  // brute


namespace sub2 {
vector<U> run() {
cerr<<"[sub2::run]"<<endl;
  SegmentTreeRange<NodeSum<U>> seg(vector<U>(N, 0));
  vector<U> anss;
  for (int q = 0; q < Q; ++q) {
    scanf("%d", &O[q]);
    if (O[q] == 1) {
      int x = X[q], y = Y[q];
      if (x > y) swap(x, y);
      x = max(x - K[q], 0);
      y = min(y + K[q], N - 1);
      hld.doPath(x, y, true, [&](int l, int r) -> void {
        seg.ch(l, r, &NodeSum<U>::add, V[q]);
      });
    } else if (O[q] == 2) {
      seg.ch(hld.dis[X[q]], hld.fin[X[q]], &NodeSum<U>::add, V[q]);
    } else if (O[q] == 3) {
      int x = X[q], y = Y[q];
      if (x > y) swap(x, y);
      x = max(x - K[q], 0);
      y = min(y + K[q], N - 1);
      U ans = 0;
      hld.doPath(x, y, true, [&](int l, int r) -> void {
        ans += getSum(seg, l, r);
      });
      anss.push_back(ans);
    } else if (O[q] == 4) {
      const U ans = getSum(seg, hld.dis[X[q]], hld.fin[X[q]]);
      anss.push_back(ans);
    } else {
      assert(false);
    }
  }
  return anss;
}
}  // sub2


int main() {
  for (; ~scanf("%d%d", &N, &Q); ) {
    A.resize(N - 1);
    B.resize(N - 1);
    for (int i = 0; i < N - 1; ++i) {
      scanf("%d%d", &A[i], &B[i]);
      --A[i];
      --B[i];
    }
    O.assign(Q, -1);
    X.assign(Q, -1);
    Y.assign(Q, -1);
    K.assign(Q, -1);
    V.assign(Q, 0);
    for (int q = 0; q < Q; ++q) {
      scanf("%d", &O[q]);
      if (O[q] == 1) {
        scanf("%d%d%d%llu", &X[q], &Y[q], &K[q], &V[q]);
        --X[q];
        --Y[q];
      } else if (O[q] == 2) {
        scanf("%d%llu", &X[q], &V[q]);
        --X[q];
      } else if (O[q] == 3) {
        scanf("%d%d%d", &X[q], &Y[q], &K[q]);
        --X[q];
        --Y[q];
      } else if (O[q] == 4) {
        scanf("%d", &X[q]);
        --X[q];
      } else {
        assert(false);
      }
    }
    
    hld = Hld(N);
    for (int i = 0; i < N - 1; ++i) {
      hld.ae(A[i], B[i]);
    }
    hld.build(0);
// cerr<<hld<<endl;
    
    bool spe2 = true;
    for (int q = 0; q < Q; ++q) if (O[q] == 1 || O[q] == 3) spe2 = spe2 && (K[q] == 0);
    bool spe3 = true;
    for (int u = 1; u < N; ++u) spe3 = spe3 && (hld.par[u] == u - 1);
    
    vector<U> anss;
    if (N <= 5000 && Q <= 5000) {
      anss = brute::run();
    } else if (spe2 || spe3) {
      anss = sub2::run();
    } else {
      assert(false);
    }
    for (const U ans : anss) {
      printf("%llu\n", ans);
    }
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 0
Wrong Answer

Test #1:

score: 0
Wrong Answer
time: 25ms
memory: 5008kb

input:

5000 5000
1 2
2 3
3 4
4 5
5 6
5 7
6 8
7 9
9 10
8 11
11 12
12 13
12 14
14 15
15 16
16 17
16 18
18 19
18 20
20 21
20 22
22 23
23 24
23 25
23 26
26 27
27 28
28 29
27 30
30 31
29 32
32 33
33 34
32 35
35 36
36 37
35 38
36 39
38 40
38 41
41 42
42 43
43 44
42 45
44 46
45 47
47 48
48 49
48 50
49 51
51 52
52...

output:

37227703492
2358890167180
2794367845468
1435810912878
1859741990288
2678958746332
6796905563873
2096843682862
5792088173151
2186592622
4014965079076
1674542130
7973948571
7140383779126
10293371118455
11706563231110
492570862
3936440195235
2834694279
4200159877904
4395772262
4221137767
10478900117
10...

result:

wrong answer 2nd numbers differ - expected: '2136305359188', found: '2358890167180'

Subtask #2:

score: 10
Accepted

Test #3:

score: 10
Accepted
time: 254ms
memory: 40204kb

input:

200000 200000
1 2
1 3
1 4
3 5
1 6
1 7
7 8
8 9
2 10
1 11
5 12
1 13
7 14
10 15
2 16
7 17
11 18
5 19
5 20
1 21
16 22
1 23
3 24
20 25
14 26
2 27
6 28
15 29
10 30
15 31
5 32
13 33
12 34
31 35
31 36
36 37
36 38
1 39
28 40
5 41
12 42
41 43
20 44
30 45
22 46
11 47
47 48
45 49
14 50
41 51
3 52
30 53
29 54
6 ...

output:

0
0
0
0
0
0
0
0
7615073807
4176911055
0
4745654848
6222845818
0
0
9739142819
0
1424960716
5224818790
9459319003
13717923473
8673060864
0
11610197664
0
0
9587792729
0
0
0
2747489046
12425650803
0
0
11191496476
0
37597503993
0
0
15164651949
14868775382
15559673116
0
16391028892
0
15726757336
0
2421390...

result:

ok 100169 numbers

Test #4:

score: 0
Accepted
time: 294ms
memory: 40092kb

input:

200000 200000
121679 2
13340 3
45206 4
112138 5
47397 6
88216 7
173469 8
109861 9
58662 10
130056 11
61155 12
4313 13
196310 14
46189 15
32349 16
143798 17
103215 18
159921 19
27365 20
14332 21
49504 22
64451 23
106931 24
59878 25
177587 26
100555 27
86848 28
793 29
79845 30
150813 31
42854 32
11551...

output:

77900221111
0
0
476439705914
0
216029652830
0
0
631267909751
508097390689
0
29277716182
695169620128
0
809294022024
0
0
829507748883
260130797154
0
1005527232590
109198360548
821333235719
0
0
1265757368752
738460021055
296232170804
845184728833
0
434366813420
0
1922343637889
0
0
0
229703081048
0
441...

result:

ok 100073 numbers

Subtask #3:

score: 5
Accepted

Test #5:

score: 5
Accepted
time: 142ms
memory: 63376kb

input:

200000 200000
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12
12 13
13 14
14 15
15 16
16 17
17 18
18 19
19 20
20 21
21 22
22 23
23 24
24 25
25 26
26 27
27 28
28 29
29 30
30 31
31 32
32 33
33 34
34 35
35 36
36 37
37 38
38 39
39 40
40 41
41 42
42 43
43 44
44 45
45 46
46 47
47 48
48 49
49 50
50 51
51 ...

output:

0
134315201201061
38210069287857
75889674481730
25202765567748
179527420359031
75824479907233
156951577189979
246509811214535
251383387317167
181645886595511
285463150681348
213797241401335
244909583142805
53376921005282
451665818220
379334117147250
720759810155057
768646965102274
224741692238593
18...

result:

ok 100065 numbers

Test #6:

score: 0
Accepted
time: 168ms
memory: 63420kb

input:

200000 200000
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12
12 13
13 14
14 15
15 16
16 17
17 18
18 19
19 20
20 21
21 22
22 23
23 24
24 25
25 26
26 27
27 28
28 29
29 30
30 31
31 32
32 33
33 34
34 35
35 36
36 37
37 38
38 39
39 40
40 41
41 42
42 43
43 44
44 45
45 46
46 47
47 48
48 49
49 50
50 51
51 ...

output:

0
1950387013442
2906443199266
2144858813468
3137341049831
1081425884175
20924388962208
73530126133368
136609133052209
125022026678010
22502893517249
99022896674514
84010333777754
13909990392191
43442491331837
190816082733002
92810414504491
244006706308139
42843404030538
126151201042579
7249812065288...

result:

ok 99740 numbers

Subtask #4:

score: 0
Runtime Error

Test #7:

score: 0
Runtime Error

input:

200000 200000
1 2
2 3
3 4
1 5
3 6
5 7
5 8
7 9
2 10
7 11
11 12
10 13
6 14
3 15
14 16
4 17
11 18
3 19
14 20
4 21
4 22
12 23
18 24
5 25
5 26
14 27
13 28
24 29
11 30
26 31
29 32
28 33
31 34
23 35
33 36
6 37
11 38
22 39
13 40
35 41
37 42
21 43
12 44
4 45
16 46
12 47
21 48
1 49
26 50
45 51
41 52
46 53
7 5...

output:


result:


Subtask #5:

score: 0
Skipped

Dependency #4:

0%

Subtask #6:

score: 0
Skipped

Dependency #4:

0%

Subtask #7:

score: 0
Skipped

Dependency #2:

100%
Accepted

Dependency #4:

0%

Subtask #8:

score: 0
Skipped

Dependency #1:

0%