QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#243182#6533. Traveling in CellsmaspyAC ✓2465ms11932kbC++2022.9kb2023-11-07 21:50:352023-11-07 21:50:36

Judging History

你现在查看的是最新测评结果

  • [2023-11-07 21:50:36]
  • 评测
  • 测评结果:AC
  • 用时:2465ms
  • 内存:11932kb
  • [2023-11-07 21:50:35]
  • 提交

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  assert(!que.empty());
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  assert(!que.empty());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/ds/segtree/dynamic_segtree_sparse.hpp"

// 常にほとんどの要素が unit であることが保証されるような動的セグ木
// したがって、default_prod の類は持たせられず、acted monoid も一般には扱えない
// 永続化しない場合のノード数を O(N) に抑えることができるのが利点
template <typename Monoid, bool PERSISTENT, int NODES>
struct Dynamic_SegTree_Sparse {
  using MX = Monoid;
  using X = typename MX::value_type;

  struct Node {
    ll idx;
    Node *l, *r;
    X prod, x;
  };

  const ll L0, R0;
  Node *pool;
  int pid;
  using np = Node *;

  Dynamic_SegTree_Sparse(ll L0, ll R0) : L0(L0), R0(R0), pid(0) {
    pool = new Node[NODES];
  }

  np new_root() { return nullptr; }

  np new_node(ll idx, const X x) {
    pool[pid].idx = idx;
    pool[pid].l = pool[pid].r = nullptr;
    pool[pid].x = pool[pid].prod = x;
    return &(pool[pid++]);
  }

  X prod(np root, ll l, ll r) {
    assert(L0 <= l && l <= r && r <= R0);
    if (l == r) return MX::unit();
    X x = MX::unit();
    prod_rec(root, L0, R0, l, r, x);
    return x;
  }

  X prod_all(np root) { return prod(root, L0, R0); }

  np set(np root, ll i, const X &x) {
    assert(L0 <= i && i < R0);
    return set_rec(root, L0, R0, i, x);
  }

  np multiply(np root, ll i, const X &x) {
    assert(L0 <= i && i < R0);
    return multiply_rec(root, L0, R0, i, x);
  }

  template <typename F>
  ll max_right(np root, F check, ll L) {
    assert(L0 <= L && L <= R0 && check(MX::unit()));
    X x = MX::unit();
    return max_right_rec(root, check, L0, R0, L, x);
  }

  template <typename F>
  ll min_left(np root, F check, ll R) {
    assert(L0 <= R && R <= R0 && check(MX::unit()));
    X x = MX::unit();
    return min_left_rec(root, check, L0, R0, R, x);
  }

  void reset() { pid = 0; }

  vc<pair<ll, X>> get_all(np root) {
    vc<pair<ll, X>> res;
    auto dfs = [&](auto &dfs, np c) -> void {
      if (!c) return;
      dfs(dfs, c->l);
      res.eb(c->idx, c->x);
      dfs(dfs, c->r);
    };
    dfs(dfs, root);
    return res;
  }

  X get(np root, ll idx) {
    auto dfs = [&](auto &dfs, np c) -> X {
      if (!c) return Monoid::unit();
      if (idx == c->idx) return c->x;
      if (idx < (c->idx)) return dfs(dfs, c->l);
      return dfs(dfs, c->r);
    };
    return dfs(dfs, root);
  }

private:
  void update(np c) {
    c->prod = c->x;
    if (c->l) c->prod = MX::op(c->l->prod, c->prod);
    if (c->r) c->prod = MX::op(c->prod, c->r->prod);
  }

  np copy_node(np c) {
    if (!c || !PERSISTENT) return c;
    pool[pid].idx = c->idx;
    pool[pid].l = c->l;
    pool[pid].r = c->r;
    pool[pid].x = c->x;
    pool[pid].prod = c->prod;
    return &(pool[pid++]);
  }

  np set_rec(np c, ll l, ll r, ll i, X x) {
    if (!c) {
      c = new_node(i, x);
      return c;
    }
    c = copy_node(c);
    if (c->idx == i) {
      c->x = x;
      update(c);
      return c;
    }
    ll m = (l + r) / 2;
    if (i < m) {
      if (c->idx < i) swap(c->idx, i), swap(c->x, x);
      c->l = set_rec(c->l, l, m, i, x);
    }
    if (m <= i) {
      if (i < c->idx) swap(c->idx, i), swap(c->x, x);
      c->r = set_rec(c->r, m, r, i, x);
    }
    update(c);
    return c;
  }

  np multiply_rec(np c, ll l, ll r, ll i, X x) {
    if (!c) {
      c = new_node(i, x);
      return c;
    }
    c = copy_node(c);
    if (c->idx == i) {
      c->x = MX::op(c->x, x);
      update(c);
      return c;
    }
    ll m = (l + r) / 2;
    if (i < m) {
      if (c->idx < i) swap(c->idx, i), swap(c->x, x);
      c->l = multiply_rec(c->l, l, m, i, x);
    }
    if (m <= i) {
      if (i < c->idx) swap(c->idx, i), swap(c->x, x);
      c->r = multiply_rec(c->r, m, r, i, x);
    }
    update(c);
    return c;
  }

  void prod_rec(np c, ll l, ll r, ll ql, ll qr, X &x) {
    chmax(ql, l);
    chmin(qr, r);
    if (ql >= qr || !c) return;
    if (l == ql && r == qr) {
      x = MX::op(x, c->prod);
      return;
    }
    ll m = (l + r) / 2;
    prod_rec(c->l, l, m, ql, qr, x);
    if (ql <= (c->idx) && (c->idx) < qr) x = MX::op(x, c->x);
    prod_rec(c->r, m, r, ql, qr, x);
  }

  template <typename F>
  ll max_right_rec(np c, const F &check, ll l, ll r, ll ql, X &x) {
    if (!c || r <= ql) return R0;
    if (check(MX::op(x, c->prod))) {
      x = MX::op(x, c->prod);
      return R0;
    }
    ll m = (l + r) / 2;
    ll k = max_right_rec(c->l, check, l, m, ql, x);
    if (k != R0) return k;
    if (ql <= (c->idx)) {
      x = MX::op(x, c->x);
      if (!check(x)) return c->idx;
    }
    return max_right_rec(c->r, check, m, r, ql, x);
  }

  template <typename F>
  ll min_left_rec(np c, const F &check, ll l, ll r, ll qr, X &x) {
    if (!c || qr <= l) return L0;
    if (check(MX::op(c->prod, x))) {
      x = MX::op(c->prod, x);
      return L0;
    }
    ll m = (l + r) / 2;
    ll k = min_left_rec(c->r, check, m, r, qr, x);
    if (k != L0) return k;
    if (c->idx < qr) {
      x = MX::op(c->x, x);
      if (!check(x)) return c->idx + 1;
    }
    return min_left_rec(c->l, check, l, m, qr, x);
  }
};
#line 2 "library/alg/monoid/add.hpp"

template <typename X>
struct Monoid_Add {
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 3 "library/ds/fenwicktree/fenwicktree.hpp"

template <typename Monoid>
struct FenwickTree {
  using G = Monoid;
  using E = typename G::value_type;
  int n;
  vector<E> dat;
  E total;

  FenwickTree() {}
  FenwickTree(int n) { build(n); }
  template <typename F>
  FenwickTree(int n, F f) {
    build(n, f);
  }
  FenwickTree(const vc<E>& v) { build(v); }

  void build(int m) {
    n = m;
    dat.assign(m, G::unit());
    total = G::unit();
  }
  void build(const vc<E>& v) {
    build(len(v), [&](int i) -> E { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m;
    dat.clear();
    dat.reserve(n);
    total = G::unit();
    FOR(i, n) { dat.eb(f(i)); }
    for (int i = 1; i <= n; ++i) {
      int j = i + (i & -i);
      if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
    }
    total = prefix_sum(m);
  }

  E prod_all() { return total; }
  E sum_all() { return total; }
  E sum(int k) { return prefix_sum(k); }
  E prod(int k) { return prefix_prod(k); }
  E prefix_sum(int k) { return prefix_prod(k); }
  E prefix_prod(int k) {
    chmin(k, n);
    E ret = G::unit();
    for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
    return ret;
  }
  E sum(int L, int R) { return prod(L, R); }
  E prod(int L, int R) {
    chmax(L, 0), chmin(R, n);
    if (L == 0) return prefix_prod(R);
    assert(0 <= L && L <= R && R <= n);
    E pos = G::unit(), neg = G::unit();
    while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
    while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
    return G::op(pos, G::inverse(neg));
  }

  void add(int k, E x) { multiply(k, x); }
  void multiply(int k, E x) {
    static_assert(G::commute);
    total = G::op(total, x);
    for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
  }

  template <class F>
  int max_right(const F check) {
    assert(check(G::unit()));
    int i = 0;
    E s = G::unit();
    int k = 1;
    while (2 * k <= n) k *= 2;
    while (k) {
      if (i + k - 1 < len(dat)) {
        E t = G::op(s, dat[i + k - 1]);
        if (check(t)) { i += k, s = t; }
      }
      k >>= 1;
    }
    return i;
  }

  int kth(E k) {
    return max_right([&k](E x) -> bool { return x <= k; });
  }
};
#line 6 "main.cpp"

void solve() {
  LL(N, Q);
  static Dynamic_SegTree_Sparse<Monoid_Add<int>, false, 4000000> seg(0, 100100);
  seg.reset();

  using np = decltype(seg)::np;
  vc<np> root(N);
  FOR(i, N) root[i] = seg.new_root();

  VEC(int, A, N);
  FOR(i, N) {
    --A[i];
    root[A[i]] = seg.set(root[A[i]], i, 1);
  }
  VEC(ll, val, N);
  FenwickTree<Monoid_Add<ll>> bit(val);

  FOR(Q) {
    LL(t);
    if (t == 1) {
      LL(i, x);
      --i, --x;
      root[A[i]] = seg.multiply(root[A[i]], i, -1);
      A[i] = x;
      root[A[i]] = seg.multiply(root[A[i]], i, +1);
    }
    if (t == 2) {
      LL(i, x);
      --i;
      bit.add(i, -val[i]);
      val[i] = x;
      bit.add(i, +val[i]);
    }
    if (t == 3) {
      LL(i, k);
      --i;
      VEC(int, color, k);
      for (auto&& x: color) --x;
      auto can = [&](int L, int R) -> int {
        int res = 0;
        for (auto&& c: color) res += seg.prod(root[c], L, R);
        return res == R - L;
      };
      int L = i, R = i + 1;
      FOR_R(k, 20) {
        int nR = R + (1 << k);
        if (nR <= N && can(R, nR)) R = nR;
        int nL = L - (1 << k);
        if (nL >= 0 && can(nL, L)) L = nL;
      }
      // print("LR", L, R);
      print(bit.sum(L, R));
    }
  }
}

signed main() {
  INT(T);
  FOR(T) solve();
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3640kb

input:

2
5 10
1 2 3 1 2
1 10 100 1000 10000
3 3 1 3
3 3 2 2 3
2 5 20000
2 3 200
3 3 2 1 3
3 3 3 1 2 3
1 3 4
2 1 100000
1 2 2
3 1 2 1 2
4 1
1 2 3 4
1000000 1000000 1000000 1000000
3 4 4 1 2 3 4

output:

100
110
1200
21211
100010
4000000

result:

ok 6 numbers

Test #2:

score: 0
Accepted
time: 181ms
memory: 3892kb

input:

20000
15 15
1 1 3 3 2 3 3 3 3 3 2 3 2 3 3
634593973 158136379 707704004 998369647 831633445 263092797 937841412 451774682 552617416 483763379 50360475 794662797 74247465 537217773 901809831
3 6 4 1 3 5 10
3 5 7 1 2 3 4 5 9 10
3 4 3 3 8 9
2 13 608033129
3 15 2 3 5
1 9 3
3 8 4 1 3 7 10
2 6 727472865
3...

output:

2689089686
8377825475
1706073651
1439027604
2689089686
792730352
8904867081
8904867081
8270273108
831633445
692051585
2782432626
697783016
883944422
184057757
287523250
184057757
696388752
184057757
1675459344
2667693025
2614711258
4006992373
1767091974
5348541057
5348541057
390631780
2290216252
942...

result:

ok 200062 numbers

Test #3:

score: 0
Accepted
time: 629ms
memory: 3964kb

input:

2000
150 150
8 3 8 8 8 6 8 4 2 7 6 8 8 5 8 7 7 8 5 6 8 8 6 8 8 8 8 7 8 6 6 8 8 8 6 2 3 4 8 8 7 8 5 8 2 6 8 7 8 8 6 8 6 8 3 8 8 8 8 4 7 8 7 3 7 6 7 5 5 8 6 8 8 6 3 8 6 7 6 8 8 7 4 8 6 7 8 7 7 7 7 8 8 8 8 2 5 2 8 8 6 7 6 3 8 8 7 8 8 8 6 6 8 6 6 7 5 8 8 8 7 8 7 7 6 8 8 8 8 8 8 6 5 7 5 5 8 7 8 7 7 7 6 5...

output:

4449391171
3290849667
852793841
5178673994
995994209
11431868919
4327723427
5071541023
3032743466
962345334
2997656427
4534278452
3851900075
3611231417
5071541023
1477584218
1299005818
1299005818
2145605244
854143763
886347565
2081234124
2333808475
2455955801
4179722063
2328504333
1473735464
4107685...

result:

ok 199987 numbers

Test #4:

score: 0
Accepted
time: 2040ms
memory: 6684kb

input:

10
30000 30000
3 4 2 4 4 4 4 3 4 3 4 3 4 3 4 4 2 4 4 4 4 4 3 3 3 4 3 4 3 4 3 3 4 2 4 3 3 3 3 4 3 4 4 4 4 2 3 3 4 2 3 4 4 4 4 1 4 4 4 4 4 4 4 4 3 3 3 4 4 4 4 4 2 3 4 4 4 4 3 4 4 3 3 3 4 4 3 4 4 2 3 4 4 4 4 3 2 4 3 4 3 2 4 4 3 4 2 2 4 4 4 4 2 4 3 2 4 4 3 4 4 4 2 4 4 3 2 3 2 3 3 3 4 2 4 3 4 1 4 3 4 4 4...

output:

6959437173
934970676
72461245502
8365928740
8384151048
984567228
12482909122
1904927816
15134139942
3759040688
92670874909
332468911
5936663371
3562978848
1300592004
10314009201
5581540905
131246926443
15087184135864
4077066271
1124704817
1520626740
4388174158
744377942
2770411457
6231852240
1508724...

result:

ok 200135 numbers

Test #5:

score: 0
Accepted
time: 1950ms
memory: 10192kb

input:

3
100000 100000
6 6 2 6 5 3 6 5 4 6 4 6 6 6 6 5 2 5 2 6 6 6 1 6 5 6 4 5 6 6 5 4 5 4 3 4 5 5 6 6 5 6 6 5 2 5 6 5 4 2 5 6 6 6 5 2 5 6 6 4 5 6 3 3 6 5 6 5 5 5 5 4 4 4 4 3 6 5 4 5 6 5 6 6 6 6 3 6 5 6 5 4 3 5 6 4 5 3 6 5 3 5 6 4 6 5 4 5 5 5 2 5 4 6 6 3 5 5 5 5 5 4 5 5 6 5 5 6 6 6 5 5 4 6 5 4 4 2 6 6 6 5 ...

output:

753014823
938372065
5655899645
168297301
14372254310
1066586326
3520855082
2591792266
2321844837
64378192092
250581310
1845085639
1402247975
198007248
2157074263
2743531397
3433471688
10332600792
1085086491
4845484125
50019185900042
4036199358
154762798
50019185900042
1221387905
11240790307
10537215...

result:

ok 199749 numbers

Test #6:

score: 0
Accepted
time: 2465ms
memory: 9756kb

input:

3
100000 100000
173 276 418 362 183 321 401 316 193 426 212 126 206 409 382 443 405 412 259 233 356 355 340 41 354 447 421 464 436 436 329 239 427 415 452 424 174 294 220 413 293 456 140 304 438 462 418 345 160 296 443 234 455 452 396 347 438 413 235 416 363 186 340 285 340 457 392 359 451 310 431 1...

output:

832547880
1825993219
676042867
310750190
650714631
657481975
1279322
838513014
453432678
940357183
846050641
631145680
278723792
689448062
154699248
45678908
56518237
839298643
611124630
499104412
324172054
742064269
626600147
728123335
602272914
45485542
868574266
876207167
342300121
917221167
7055...

result:

ok 200119 numbers

Test #7:

score: 0
Accepted
time: 530ms
memory: 11680kb

input:

3
100000 100000
66046 49249 42478 61684 59308 38366 66208 38769 50465 63701 50193 47811 50312 56793 58616 63383 58390 17546 23446 57532 59030 63009 62771 46338 52747 54677 68893 58360 56617 42330 65075 51193 65417 67035 54247 54323 39404 61892 42821 30094 67958 46206 53273 28507 65864 42364 64063 46...

output:

787181803
340358691
794440759
970166774
501256821
822531703
505349238
299646179
317091968
718901636
589846615
490283989
1183290
98835675
715091970
941598117
81757251
249078591
559980949
587721512
408541247
542135558
217103011
916103998
422219165
786665928
215595722
309683697
275650079
660176857
9707...

result:

ok 199750 numbers

Test #8:

score: 0
Accepted
time: 1075ms
memory: 11932kb

input:

3
100000 100000
2 2 3 1 1 3 1 3 1 1 1 1 1 3 3 2 3 1 1 3 3 3 2 1 2 3 2 3 1 1 2 2 2 3 1 1 3 3 3 3 1 3 1 1 3 2 3 1 1 2 3 3 2 1 3 1 1 1 2 3 3 2 3 3 1 1 2 2 2 1 1 3 1 1 2 2 1 3 3 3 2 1 1 2 1 2 3 3 3 2 2 3 3 2 3 2 1 3 3 3 2 2 3 1 3 2 3 2 3 1 2 2 1 2 1 3 3 3 2 2 3 1 3 2 1 1 1 2 1 2 2 1 3 1 2 1 1 3 3 2 3 3 ...

output:

50035938417434
50036115992265
50036315519498
3975347985
50036470174447
50036191297549
7222739016
50036248757817
1886106914
50037215621946
50037215621946
50037215621946
50037789462602
50037789462602
50038171558883
50038171558883
50038171558883
50037356071541
50037356071541
840665598
50037454922987
19...

result:

ok 144306 numbers

Test #9:

score: 0
Accepted
time: 1282ms
memory: 11736kb

input:

3
100000 100000
60522 14575 36426 79445 48772 90081 33447 90629 3497 47202 7775 94325 63982 4784 68417 2156 31932 35902 95728 78537 23857 30739 86918 29211 39679 38506 63340 86568 61868 60016 87940 96263 24593 1449 36991 90310 23355 77068 11431 8580 91757 49218 74934 94328 63676 29355 96221 99080 95...

output:

49028798194951
49028798194951
49028798194951
445374817
49028798194951
49028798194951
49028798194951
49028798194951
49029113499144
49029113499144
49029113499144
568084096
49029252709603
49029252709603
49029252709603
49029252709603
49029252709603
49029252709603
49029252709603
142834402
644706458
49029...

result:

ok 151536 numbers

Test #10:

score: 0
Accepted
time: 1697ms
memory: 11036kb

input:

3
100000 100000
2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 ...

output:

50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
50042766706436
...

result:

ok 300000 numbers