QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#239901#6184. Atcoder ProblemCrysflyWA 1ms5176kbC++173.2kb2023-11-05 00:20:592023-11-05 00:20:59

Judging History

你现在查看的是最新测评结果

  • [2023-11-05 00:20:59]
  • 评测
  • 测评结果:WA
  • 用时:1ms
  • 内存:5176kb
  • [2023-11-05 00:20:59]
  • 提交

answer

// what is matter? never mind. 
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,sse4,popcnt,abm,mmx,avx,avx2") 
#include<bits/stdc++.h>
#define For(i,a,b) for(int i=(a);i<=(b);++i)
#define Rep(i,a,b) for(int i=(a);i>=(b);--i)
#define ll long long
//#define int long long
#define ull unsigned long long
using namespace std;
inline ll read()
{
    char c=getchar();ll x=0;bool f=0;
    for(;!isdigit(c);c=getchar())f^=!(c^45);
    for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+(c^48);
    if(f)x=-x;return x;
}

#define mod 998244353
struct modint{
	int x;
	modint(int o=0){x=o;}
	modint &operator = (int o){return x=o,*this;}
	modint &operator +=(modint o){return x=x+o.x>=mod?x+o.x-mod:x+o.x,*this;}
	modint &operator -=(modint o){return x=x-o.x<0?x-o.x+mod:x-o.x,*this;}
	modint &operator *=(modint o){return x=1ll*x*o.x%mod,*this;}
	modint &operator ^=(int b){
		modint a=*this,c=1;
		for(;b;b>>=1,a*=a)if(b&1)c*=a;
		return x=c.x,*this;
	}
	modint &operator /=(modint o){return *this *=o^=mod-2;}
	friend modint operator +(modint a,modint b){return a+=b;}
	friend modint operator -(modint a,modint b){return a-=b;}
	friend modint operator *(modint a,modint b){return a*=b;}
	friend modint operator /(modint a,modint b){return a/=b;}
	friend modint operator ^(modint a,int b){return a^=b;}
	friend bool operator ==(modint a,int b){return a.x==b;}
	friend bool operator !=(modint a,int b){return a.x!=b;}
	bool operator ! () {return !x;}
	modint operator - () {return x?mod-x:0;}
	bool operator <(const modint&b)const{return x<b.x;}
};
inline modint qpow(modint x,int y){return x^y;}

vector<modint> fac,ifac,iv;
inline void initC(int n)
{
	if(iv.empty())fac=ifac=iv=vector<modint>(2,1);
	int m=iv.size(); ++n;
	if(m>=n)return;
	iv.resize(n),fac.resize(n),ifac.resize(n);
	For(i,m,n-1){
		iv[i]=iv[mod%i]*(mod-mod/i);
		fac[i]=fac[i-1]*i,ifac[i]=ifac[i-1]*iv[i];
	}
}
inline modint C(int n,int m){
	if(m<0||n<m)return 0;
	return initC(n),fac[n]*ifac[m]*ifac[n-m];
}
inline modint sign(int n){return (n&1)?(mod-1):(1);}

#define fi first
#define se second
#define pb push_back
#define mkp make_pair
typedef pair<int,int>pii;
typedef vector<int>vi;
 
#define maxn 200005
#define inf 0x3f3f3f3f

ll n,m,x;
modint res[maxn];
modint dp[64][2][2];
map<ll,modint>mp;

modint f[maxn],sf[2];
void calc(modint w,modint a,modint b){
	// w*(1/(1+x))^a*(1/(1-x))^b
	if(!w.x)return;
	f[0]=w;
	sf[0]=w,sf[1]=0;
	For(i,0,n-1){
		f[i+1]=b*(sf[0]+sf[1])-a*(sf[i%2]-sf[(i+1)%2]);
		f[i+1]*=iv[i+1];
		sf[(i+1)%2]+=f[i+1];
	}
	For(i,0,n)res[i]+=f[i],f[i]=0;
}

signed main()
{
	n=read(),m=read(),x=read(),++m;
	initC(n+1);
	dp[60][0][0]=1;
	mp[0]+=1;
	Rep(i,59,0){
		For(a,0,1)
			For(b,0,1)
				dp[i][a^(m>>i&1)][b^(x>>i&1)]+=dp[i+1][a][b];
		For(a,0,1){
			ll cnt=0;
			Rep(j,59,i+1)
				if(m>>j&1) cnt+=1ll<<(j-1);
			Rep(j,i,0)
				if((m>>i&1) && (a!=(j==i))) cnt+=1ll<<j;
			mp[cnt]+=dp[i][a][0]-dp[i][a][1];
		}
		For(a,0,1)
			For(b,0,1)
				dp[i][a][b]+=dp[i+1][a][b];
	}
	for(auto [x,y]:mp) calc(y,x%mod,(m-x)%mod);
	modint I=1; I/=((1ll<<60)%mod);
	For(i,1,n) res[i]*=I,cout<<res[i].x<<"\n";
	return 0;
}
/*

*/

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 5104kb

input:

5 6 7

output:

0
3
7
25
49

result:

ok 5 number(s): "0 3 7 25 49"

Test #2:

score: -100
Wrong Answer
time: 1ms
memory: 5176kb

input:

10 100 0

output:

343146497
62390372
717489439
249599222
63138946
138175094
764990474
6758605
889395069
6897459

result:

wrong answer 1st numbers differ - expected: '1', found: '343146497'