QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#234520 | #7613. Inverse Problem | maspy | AC ✓ | 37703ms | 399996kb | C++20 | 34.1kb | 2023-11-01 18:36:41 | 2023-11-01 18:36:42 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
T bmod(T x, U y) {
return x - y * floor(x, y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
#ifdef FASTIO
void write() { fastio::printer.write(val); }
void read() {
fastio::scanner.read(val);
val %= mod;
}
#endif
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1045430273) return {20, 363};
if (mod == 1051721729) return {20, 330};
if (mod == 1053818881) return {20, 2789};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 1 "library/enumerate/bits.hpp"
template <typename F>
void enumerate_bits_32(u32 s, F f) {
while (s) {
int i = __builtin_ctz(s);
f(i);
s ^= 1 << i;
}
}
template <typename F>
void enumerate_bits_64(u64 s, F f) {
while (s) {
int i = __builtin_ctzll(s);
f(i);
s ^= u64(1) << i;
}
}
template <typename BS, typename F>
void enumerate_bits_bitset(BS& b, int L, int R, F f) {
int p = (b[L] ? L : b._Find_next(L));
while (p < R) {
f(p);
p = b._Find_next(p);
}
}
#line 6 "main.cpp"
// #include "enumerate/partition.hpp"
#line 2 "library/random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 3 "library/ds/hashmap.hpp"
// u64 -> Val
template <typename Val, int LOG = 20>
struct HashMap {
int N;
u64* keys;
Val* vals;
vc<int> IDS;
bitset<1 << LOG> used;
const int shift;
const u64 r = 11995408973635179863ULL;
HashMap()
: N(1 << LOG), keys(new u64[N]), vals(new Val[N]), shift(64 - __lg(N)) {}
int hash(ll x) {
static const u64 FIXED_RANDOM
= std::chrono::steady_clock::now().time_since_epoch().count();
return (u64(x + FIXED_RANDOM) * r) >> shift;
}
int index(const u64& key) {
int i = 0;
for (i = hash(key); used[i] && keys[i] != key; (i += 1) &= (N - 1)) {}
return i;
}
// [] した時点で要素は作られる
Val& operator[](const u64& key) {
int i = index(key);
if (!used[i]) IDS.eb(i), used[i] = 1, keys[i] = key, vals[i] = Val{};
return vals[i];
}
Val get(const u64& key, Val default_value) {
int i = index(key);
if (!used[i]) return default_value;
return vals[i];
}
bool count(const u64& key) {
int i = index(key);
return used[i] && keys[i] == key;
}
void reset() {
for (auto&& i: IDS) used[i] = 0;
IDS.clear();
}
// f(key, val)
template <typename F>
void enumerate_all(F f) {
for (auto&& i: IDS) f(keys[i], vals[i]);
}
};
#line 2 "library/alg/monoid/mul.hpp"
template <class T>
struct Monoid_Mul {
using value_type = T;
using X = T;
static constexpr X op(const X &x, const X &y) noexcept { return x * y; }
static constexpr X inverse(const X &x) noexcept { return X(1) / x; }
static constexpr X unit() { return X(1); }
static constexpr bool commute = true;
};
#line 1 "library/alg/acted_set/from_monoid.hpp"
template <typename Monoid>
struct ActedSet_From_Monoid {
using Monoid_A = Monoid;
using A = typename Monoid::value_type;
using S = A;
static S act(const S &x, const A &g) { return Monoid::op(x, g); }
};
#line 4 "library/nt/discrete_log.hpp"
// モノイド X の作用する集合 S、ハッシュ関数 H:S -> Z
// x in X, s, t in S に対して x^ns = t を解く
// [lb, ub) の最初の解をかえす。なければ -1 をかえす。
template <typename ActedSet, typename F, int MP_SIZE = 20>
ll discrete_log_acted(typename ActedSet::A x, typename ActedSet::S s,
typename ActedSet::S t, F H, ll lb, ll ub) {
static HashMap<bool, MP_SIZE> MP;
MP.reset();
using Mono = typename ActedSet::Monoid_A;
using X = typename Mono::value_type;
using S = typename ActedSet::S;
if (lb >= ub) return -1;
auto xpow = [&](ll n) -> X {
X p = x;
X res = Mono::unit();
while (n) {
if (n & 1) res = Mono::op(res, p);
p = Mono::op(p, p);
n /= 2;
}
return res;
};
auto Ht = H(t);
s = ActedSet::act(s, xpow(lb));
u64 LIM = ub - lb;
ll K = sqrt(LIM) + 1;
FOR(k, K) {
t = ActedSet::act(t, x);
MP[H(t)] = 1;
}
X y = xpow(K);
int failed = 0;
FOR(k, K + 1) {
S s1 = ActedSet::act(s, y);
if (MP.count(H(s1))) {
FOR(i, K) {
if (H(s) == Ht) {
ll ans = k * K + i + lb;
return (ans >= ub ? -1 : ans);
}
s = ActedSet::act(s, x);
}
if (failed) return -1;
failed = 1;
}
s = s1;
}
return -1;
}
// 群 X における log_a b の計算
// ハッシュ関数 H : X -> long long を持たせる
// [lb, ub) の最初の解をかえす、なければ -1
template <typename Monoid, typename F>
ll discrete_log_monoid(typename Monoid::X a, typename Monoid::X b, F H, ll lb,
ll ub) {
using AM = ActedSet_From_Monoid<Monoid>;
return discrete_log_acted<AM>(a, Monoid::unit(), b, H, lb, ub);
}
#line 2 "library/mod/primitive_root.hpp"
#line 2 "library/nt/primetest.hpp"
struct m64 {
using i64 = int64_t;
using u64 = uint64_t;
using u128 = __uint128_t;
inline static u64 m, r, n2; // r * m = -1 (mod 1<<64), n2 = 1<<128 (mod m)
static void set_mod(u64 m) {
assert((m & 1) == 1);
m64::m = m;
n2 = -u128(m) % m;
r = m;
FOR(_, 5) r *= 2 - m * r;
r = -r;
assert(r * m == -1ull);
}
static u64 reduce(u128 b) { return (b + u128(u64(b) * r) * m) >> 64; }
u64 x;
m64() : x(0) {}
m64(u64 x) : x(reduce(u128(x) * n2)){};
u64 val() const {
u64 y = reduce(x);
return y >= m ? y - m : y;
}
m64 &operator+=(m64 y) {
x += y.x - (m << 1);
x = (i64(x) < 0 ? x + (m << 1) : x);
return *this;
}
m64 &operator-=(m64 y) {
x -= y.x;
x = (i64(x) < 0 ? x + (m << 1) : x);
return *this;
}
m64 &operator*=(m64 y) {
x = reduce(u128(x) * y.x);
return *this;
}
m64 operator+(m64 y) const { return m64(*this) += y; }
m64 operator-(m64 y) const { return m64(*this) -= y; }
m64 operator*(m64 y) const { return m64(*this) *= y; }
bool operator==(m64 y) const {
return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
}
bool operator!=(m64 y) const { return not operator==(y); }
m64 pow(u64 n) const {
m64 y = 1, z = *this;
for (; n; n >>= 1, z *= z)
if (n & 1) y *= z;
return y;
}
};
bool primetest(const uint64_t x) {
using u64 = uint64_t;
if (x == 2 or x == 3 or x == 5 or x == 7) return true;
if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false;
if (x < 121) return x > 1;
const u64 d = (x - 1) >> __builtin_ctzll(x - 1);
m64::set_mod(x);
const m64 one(1), minus_one(x - 1);
auto ok = [&](u64 a) {
auto y = m64(a).pow(d);
u64 t = d;
while (y != one and y != minus_one and t != x - 1) y *= y, t <<= 1;
if (y != minus_one and t % 2 == 0) return false;
return true;
};
if (x < (1ull << 32)) {
for (u64 a: {2, 7, 61})
if (not ok(a)) return false;
} else {
for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (x <= a) return true;
if (not ok(a)) return false;
}
}
return true;
}
#line 3 "library/nt/factor.hpp"
mt19937_64 rng_mt{random_device{}()};
ll rnd(ll n) { return uniform_int_distribution<ll>(0, n - 1)(rng_mt); }
ll rho(ll n, ll c) {
m64::set_mod(n);
assert(n > 1);
const m64 cc(c);
auto f = [&](m64 x) { return x * x + cc; };
m64 x = 1, y = 2, z = 1, q = 1;
ll g = 1;
const ll m = 1LL << (__lg(n) / 5); // ?
for (ll r = 1; g == 1; r <<= 1) {
x = y;
FOR(_, r) y = f(y);
for (ll k = 0; k < r and g == 1; k += m) {
z = y;
FOR(_, min(m, r - k)) y = f(y), q *= x - y;
g = gcd(q.val(), n);
}
}
if (g == n) do {
z = f(z);
g = gcd((x - z).val(), n);
} while (g == 1);
return g;
}
ll find_prime_factor(ll n) {
assert(n > 1);
if (primetest(n)) return n;
FOR(_, 100) {
ll m = rho(n, rnd(n));
if (primetest(m)) return m;
n = m;
}
cerr << "failed" << endl;
assert(false);
return -1;
}
// ソートしてくれる
vc<pair<ll, int>> factor(ll n) {
assert(n >= 1);
vc<pair<ll, int>> pf;
FOR3(p, 2, 100) {
if (p * p > n) break;
if (n % p == 0) {
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
}
while (n > 1) {
ll p = find_prime_factor(n);
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
sort(all(pf));
return pf;
}
vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) {
vc<pair<ll, int>> res;
while (n > 1) {
int p = lpf[n];
int e = 0;
while (n % p == 0) {
n /= p;
++e;
}
res.eb(p, e);
}
return res;
}
#line 2 "library/mod/barrett.hpp"
// https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp
struct Barrett {
u32 m;
u64 im;
explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {}
u32 umod() const { return m; }
u32 modulo(u64 z) {
if (m == 1) return 0;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z - y + (z < y ? m : 0));
}
u64 floor(u64 z) {
if (m == 1) return z;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z < y ? x - 1 : x);
}
pair<u64, u32> divmod(u64 z) {
if (m == 1) return {z, 0};
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
if (z < y) return {x - 1, z - y + m};
return {x, z - y};
}
u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); }
};
struct Barrett_64 {
u128 mod, mh, ml;
explicit Barrett_64(u64 mod = 1) : mod(mod) {
u128 m = u128(-1) / mod;
if (m * mod + mod == u128(0)) ++m;
mh = m >> 64;
ml = m & u64(-1);
}
u64 umod() const { return mod; }
u64 modulo(u128 x) {
u128 z = (x & u64(-1)) * ml;
z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64);
z = (x >> 64) * mh + (z >> 64);
x -= z * mod;
return x < mod ? x : x - mod;
}
u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); }
};
#line 3 "library/mod/mod_pow.hpp"
ll mod_pow(ll a, ll n, int mod) {
assert(n >= 0);
a %= mod;
if (a < 0) a += mod;
Barrett bt(mod);
ll p = a, v = bt.modulo(1);
while (n) {
if (n & 1) v = bt.mul(v, p);
p = bt.mul(p, p);
n >>= 1;
}
return v;
}
ll mod_pow_64(ll a, ll n, ll mod) {
assert(n >= 0);
a %= mod;
if (a < 0) a += mod;
ll p = a, v = 1 % mod;
while (n) {
if (n & 1) v = i128(v) * p % mod;
p = i128(p) * p % mod;
n >>= 1;
}
return v;
}
#line 6 "library/mod/primitive_root.hpp"
// int
int primitive_root(int p) {
auto pf = factor(p - 1);
auto is_ok = [&](int g) -> bool {
for (auto&& [q, e]: pf)
if (mod_pow(g, (p - 1) / q, p) == 1) return false;
return true;
};
while (1) {
int x = RNG(1, p);
if (is_ok(x)) return x;
}
return -1;
}
ll primitive_root_64(ll p) {
auto pf = factor(p - 1);
auto is_ok = [&](ll g) -> bool {
for (auto&& [q, e]: pf)
if (mod_pow_64(g, (p - 1) / q, p) == 1) return false;
return true;
};
while (1) {
ll x = RNG(1, p);
if (is_ok(x)) return x;
}
return -1;
}
#line 11 "main.cpp"
using mint = modint107;
using MINT = modint<1'000'000'006>;
template <typename F>
void enumerate_partition(int N, F query) {
assert(N >= 0);
auto dfs = [&](auto self, vc<int>& p, int sum) -> void {
if (sum == N) {
query(p);
return;
}
int nxt = (len(p) == 0 ? N : p.back());
chmin(nxt, N - sum);
p.eb(0);
FOR_R(x, 7, nxt + 1) {
p.back() = x;
self(self, p, sum + x);
}
p.pop_back();
};
vc<int> p;
dfs(dfs, p, 0);
}
MINT log(mint x) {
static mint r = 0;
if (r == 0) r = primitive_root(mint::get_mod());
return discrete_log_monoid<Monoid_Mul<mint>>(
r, x, [](auto x) { return x.val; }, 0, mint::get_mod());
}
void out(int N, vc<int> A) {
print(N);
if (N == 1) return;
print(1, 2);
int p = 2;
for (auto& a: A) {
int s = p + 1;
int t = p + a + 1;
FOR(i, s, t) print(p, i);
p = t - 1;
}
assert(p == N);
}
void solve() {
const int LIM = 125;
/*
FOR(n, LIM) {
int cnt = 0;
enumerate_partition(n, [&](vc<int> P) -> void { ++cnt; });
}
FOR(n, 125) {
int cnt = 0;
FOR(a, n / 5 + 1) {
int m = n - 5 * a;
FOR(b, m / 4 + 1) {
int nn = m - 4 * b;
FOR(c, nn / 3 + 1) {
int mm = nn - 3 * c;
FOR(d, mm / 2 + 1) { ++cnt; }
}
}
}
}
*/
vc<HashMap<int, 18>> MP(LIM);
vc<MINT> LOG(150);
FOR(x, 1, 150) { LOG[x] = log(mint(x)); }
auto restore = [&](int x) -> tuple<int, int, int, int, int> {
int a = (x >> 24);
x -= (a << 24);
int b = x >> 19;
x -= b << 19;
int c = x >> 13;
x -= c << 13;
int d = x >> 7;
x -= d << 7;
int e = x;
return {a, b, c, d, e};
};
auto solve_by_size = [&](int N, mint R0) -> pair<bool, vc<int>> {
R0 /= mint(N * (N - 1));
MINT R = log(R0);
vc<MINT> prod(N + 10);
prod[0] = 0;
FOR(i, 1, N - 1) { prod[i] = prod[i - 1] + LOG[N - 1 - i]; }
FOR(n, LIM) { MP[n].reset(); }
// 小さい partition をすべて計算
FOR(n, LIM) {
MP[n].reset();
if (n > N - 2) break;
FOR(a, n / 5 + 1) {
int n1 = n - 5 * a;
FOR(b, n1 / 4 + 1) {
int n2 = n1 - 4 * b;
FOR(c, n2 / 3 + 1) {
int n3 = n2 - 3 * c;
FOR(d, n3 / 2 + 1) {
int e = n3 - 2 * d;
MINT x = prod[5] * a + prod[4] * b + prod[3] * c + prod[2] * d
+ prod[1] * e;
MP[n][x.val] = (a << 24) | (b << 19) | (c << 13) | (d << 7) | e;
}
}
}
}
}
bool end = 0;
vc<int> A;
auto dfs = [&](auto dfs, vc<int>& p, int rest, MINT t) -> void {
if (end) return;
if (MP[rest].count(t.val)) {
end = 1;
auto [a, b, c, d, e] = restore(MP[rest][t.val]);
FOR(a) A.eb(5);
FOR(b) A.eb(4);
FOR(c) A.eb(3);
FOR(d) A.eb(2);
FOR(e) A.eb(1);
assert(SUM<int>(A) == rest);
A.insert(A.end(), all(p));
return;
}
int nxt = (len(p) == 0 ? N - 2 : p.back());
chmin(nxt, rest);
p.eb(0);
FOR_R(x, 6, nxt + 1) {
if (end) return;
p.back() = x;
dfs(dfs, p, rest - x, t - prod[x]);
}
p.pop_back();
};
vc<int> p;
dfs(dfs, p, N - 2, R);
return {end, A};
};
INT(T);
FOR(T) {
mint R;
read(R);
if (R == mint(1)) {
out(1, {});
continue;
}
if (R == mint(2)) {
out(2, {});
continue;
}
int N = 2;
while (1) {
++N;
auto [ok, A] = solve_by_size(N, R);
if (!ok) continue;
out(N, A);
break;
}
}
}
signed main() {
solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 71ms
memory: 21176kb
input:
4 2 360 1 509949433
output:
2 1 2 5 1 2 2 3 2 4 4 5 1 10 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10
result:
ok OK (4 test cases)
Test #2:
score: 0
Accepted
time: 16390ms
memory: 399780kb
input:
9 185396120 468170792 837583517 696626231 338497514 762842660 800028852 928391161 733524004
output:
14 1 2 2 3 2 4 4 5 4 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 122 1 2 2 3 2 4 2 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 19 20 19 21 21 22 21 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 36 38 36 39 36 40 36 41 36 42 36 4...
result:
ok OK (9 test cases)
Test #3:
score: 0
Accepted
time: 37703ms
memory: 399996kb
input:
10 338497514 733524004 447182954 415993605 453460670 50499055 648088551 986982752 907925397 315315230
output:
124 1 2 2 3 2 4 2 5 2 6 2 7 7 8 7 9 7 10 10 11 10 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 22 24 22 25 22 26 22 27 22 28 22 29 22 30 22 31 22 32 22 33 22 34 22 35 22 36 22 37 22 38 22 39 22 40 22 41 22 42 22 43 22 44 22 45 22 46 22 47 22 48 22 49 22 50 22 51 22 52 22 53 2...
result:
ok OK (10 test cases)
Test #4:
score: 0
Accepted
time: 4698ms
memory: 334632kb
input:
10 1 2 3 4 5 6 7 8 9 10
output:
1 2 1 2 102 1 2 2 3 2 4 4 5 4 6 6 7 6 8 8 9 8 10 10 11 10 12 12 13 13 14 14 15 15 16 15 17 15 18 15 19 15 20 15 21 15 22 15 23 15 24 15 25 15 26 15 27 15 28 15 29 15 30 15 31 15 32 15 33 15 34 15 35 15 36 15 37 15 38 38 39 38 40 38 41 38 42 38 43 38 44 38 45 38 46 38 47 38 48 38 49 38 50 38 51 38 52...
result:
ok OK (10 test cases)
Test #5:
score: 0
Accepted
time: 1508ms
memory: 291304kb
input:
10 269199917 392009324 753889928 751355133 472639410 132096559 331333826 40414701 72847302 475706026
output:
55 1 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 30 2 31 2 32 2 33 2 34 2 35 2 36 2 37 2 38 2 39 2 40 2 41 2 42 2 43 2 44 2 45 2 46 2 47 2 48 2 49 2 50 2 51 2 52 2 53 2 54 2 55 84 1 2 2 3 2 4 2 5 2 6 6 7 6 8 6 9 ...
result:
ok OK (10 test cases)
Extra Test:
score: 0
Extra Test Passed