QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#234277#7693. Convex Hull ExtensionQingyuAC ✓242ms55080kbJava1134.1kb2023-11-01 15:30:272023-11-01 15:30:28

Judging History

你现在查看的是最新测评结果

  • [2023-11-01 15:30:28]
  • 评测
  • 测评结果:AC
  • 用时:242ms
  • 内存:55080kb
  • [2023-11-01 15:30:27]
  • 提交

answer

// Liam Keliher, 2023
// Solution for NENA 2023 problem "Convex Hull Extension" (convexhullextension)
//
// Very case-based.
// Flip/rotate each side (along with the point before and the point after) so that either:
// (i) the side is horizontal on top of hull (CASE_TOP), or
// (ii) the side has negative slope and is on top-right of hull (CASE_TOP_RIGHT)
// If the side under consideration is labelled S(p1,p2), then the preceding and following
// points are labelled p0 and p3.
// Determine whether the rays R(p0,p1) and R(p3,p2):
// - diverge (in which case there are infinitely many extension points)
// - are parallel (in which case there are either zero or infinitely many extension points)
// - converge (in which case there are finitely many extension points, so count them)
//
// Terminology used in code comments below:
// In CASE_TOP_RIGHT, there are two ways S(p0,p1) can have negative slope (similarly for S(p2,p3)):
// - negative-slope-lower: p0 is lower than p1
// - negative-slope-upper: p0 is higher than p1


import java.io.*;

public class ConvexKeliher {
    static final int CASE_TOP = 1;
    static final int CASE_TOP_RIGHT = 2;
    static final String INFINITELY_MANY = "infinitely many";
    //--------------------------------------------------------------------
    public static void main(String[] args) throws IOException {
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        int n = Integer.parseInt(br.readLine());
        if (n == 3) {
            System.out.println(INFINITELY_MANY);
            return;
        } // if

        int[][] points = new int[n][2];
        for (int i = 0; i < n; i++) {
            String[] tokens = br.readLine().split(" ");
            int x = Integer.parseInt(tokens[0]);
            int y = Integer.parseInt(tokens[1]);
            points[i][0] = x;
            points[i][1] = y;
        } // for i

        // For each side S(p1,p2) of the convex hull, store the 4 points (p0,p1,p2,p3)
        // (counterclockwise order), and transform these points if necessary so that
        // the transformed side (p1,p2) is either on the top of the hull (flat) or
        // is on the top-right of the convex hull (==> negative slope).  Record which
        // of these two cases applies in the cases[] array.
        int[][][] transformed = new int[n][4][2];
        int[] cases = new int[n];
        for (int i = 0; i < n; i++) {
            int[][] quad = new int[4][2];
            quad[0][0] = points[i][0];
            quad[0][1] = points[i][1];
            quad[1][0] = points[(i+1)%n][0];
            quad[1][1] = points[(i+1)%n][1];
            quad[2][0] = points[(i+2)%n][0];
            quad[2][1] = points[(i+2)%n][1];
            quad[3][0] = points[(i+3)%n][0];
            quad[3][1] = points[(i+3)%n][1];

            cases[i] = transformIfNecessary(quad);
            for (int j = 0; j < 4; j++) {
                transformed[i][j][0] = quad[j][0];
                transformed[i][j][1] = quad[j][1];
            } // for j
        } // for i

        // Check for divergence
        for (int i = 0; i < n; i++) {
            if (divergent(transformed[i], cases[i])) {
                System.out.println(INFINITELY_MANY);
                return;
            } // if
        } // for i

        // Check for parallel lines that enclose infinitely many points
        for (int i = 0; i < n; i++) {
            if (parallelAndEncloseInfinitelyManyPoints(transformed[i], cases[i])) {
                System.out.println(INFINITELY_MANY);
                return;
            } // if
        } // for i

        // Everything is convergent, or parallel but enclosing zero points, so the answer is finite
        long answer = 0;
        for (int i = 0; i < n; i++) {
            // At this point in the program, parallel means enclosing zero points, so skip
            if (parallel(transformed[i])) {
                continue;
            } // if

            int currCase = cases[i];
            if (currCase == CASE_TOP) {
                answer += countExtensionPointsTop(transformed[i]);
            } // if
            else {   // currCase == CASE_TOP_RIGHT
                answer += countExtensionPointsTopRight(transformed[i]);
            } // else
        } // for i
        System.out.println(answer);
    } // main(String[])
    //--------------------------------------------------------------------
    // Rotate and/or reflect p0, p1, p2, p3 (if necessary) so that S(p1,p2)
    // is on top of hull or top-right of hull, and return CASE_TOP or
    // CASE_TOP_RIGHT as appropriate.  When finished, points in quad[][]
    // (possibly transformed) are still in counterclockwise order.
    static int transformIfNecessary(int[][] quad) {
        int x0 = quad[0][0];
        int y0 = quad[0][1];
        int x1 = quad[1][0];
        int y1 = quad[1][1];
        int x2 = quad[2][0];
        int y2 = quad[2][1];
        int x3 = quad[3][0];
        int y3 = quad[3][1];   // never used

        // Case 1: line segment S(p1,p2) is initially horizontal or vertical
        // Translate as necessary so that:
        //    - S(p1,p2) is horizontal
        //    - p0, p3 are below p1, p2
        //    - if only one of S(p0,p1), S(p2,p3) is vertical, then it is S(p0,p1)

        // Subcase 1-A: S(p1,p2) is initially horizontal at top of hull
        if (y1 == y2 && y0 < y1) {
            if (x0 != x1 && x2 == x3) {
                swapLeftToRight(quad);
            } // if
            return CASE_TOP;
        } // if

        // Subcase 1-B: S(p1,p2) is initially horizontal at bottom of hull
        else if (y1 == y2 && y0 > y1) {
            swapBottomToTop(quad);
            if (x0 != x1 && x2 == x3) {
                swapLeftToRight(quad);
            } // if
            return CASE_TOP;
        } // else if

        // Subcase 1-C: S(p1,p2) is initially vertical on right side of hull
        else if (x1 == x2 && x0 < x1) {
            rotateCounterclockwise90Degrees(quad);
            if (x0 != x1 && x2 == x3) {
                swapLeftToRight(quad);
            } // if
            return CASE_TOP;
        } // else if

        // Subcase 1-D: S(p1,p2) is initially vertical on left side of hull
        else if (x1 == x2 && x0 > x1) {
            rotateClockwise90Degrees(quad);
            if (x0 != x1 && x2 == x3) {
                swapLeftToRight(quad);
            } // if
            return CASE_TOP;
        } // else if

        // Case 2: line segment S(p1,p2) is *not* initially horizontal or vertical
        // Translate as necessary so that:
        //    - S(p1,p2) is has negative slope and is positioned as if in top-right part of hull
        //    - this means that p0 and p3 both lie strictly to the left of line L(p1,p2)

        // Subcase 2-A: S(p1,p2) intially in top-left of hull
        else if (x1 > x2 && y1 > y2) {
            rotateClockwise90Degrees(quad);
            return CASE_TOP_RIGHT;
        } // else if

        // Subcase 2-B: S(p1,p2) intially in bottom-left of hull
        else if (x1 < x2 && y1 > y2) {
            rotateClockwise90Degrees(quad);
            rotateClockwise90Degrees(quad);
            return CASE_TOP_RIGHT;
        } // else if

        // Subcase 2-C: S(p1,p2) intially in bottom-right of hull
        else if (x1 < x2 && y1 < y2) {
            rotateCounterclockwise90Degrees(quad);
            return CASE_TOP_RIGHT;
        } // else if

        // Subcase 2-D: S(p1,p2) initially in top-right of hull
        // (all is right with the world)
        return CASE_TOP_RIGHT;

    } // transformIfNecessary(int[][])
    //--------------------------------------------------------------------
    // Assumption: incoming points are in counterclockwise order
    // - after transformation, they are still in counterclockwise order
    static void swapLeftToRight(int[][] quad) {
        // negate the x-values
        quad[0][0] = -quad[0][0];
        quad[1][0] = -quad[1][0];
        quad[2][0] = -quad[2][0];
        quad[3][0] = -quad[3][0];

        // swap p0,p3 and p1,p2
        int[] temp = quad[0];
        quad[0] = quad[3];
        quad[3] = temp;
        temp = quad[1];
        quad[1] = quad[2];
        quad[2] = temp;
    } // swapLeftToRight(int[][])
    //--------------------------------------------------------------------
    // Assumption: incoming points are in counterclockwise order
    // - after transformation, they are still in counterclockwise order
    // - could also be accomplished with two 90-degree rotations
    static void swapBottomToTop(int[][] quad) {
        // negate the y-values
        quad[0][1] = -quad[0][1];
        quad[1][1] = -quad[1][1];
        quad[2][1] = -quad[2][1];
        quad[3][1] = -quad[3][1];

        // negate the x-values
        quad[0][0] = -quad[0][0];
        quad[1][0] = -quad[1][0];
        quad[2][0] = -quad[2][0];
        quad[3][0] = -quad[3][0];
    } // swapBottomToTop(int[][])
    //--------------------------------------------------------------------
    // (x,y) -> (-y,x)
    static void rotateCounterclockwise90Degrees(int[][] quad) {
        for (int i = 0; i < 4; i++) {
            int x = quad[i][0];
            int y = quad[i][1];
            quad[i][0] = -y;
            quad[i][1] = x;
        } // for i
    } // rotateCounterclockwise90Degrees(int[][])
    //--------------------------------------------------------------------
    // (x,y) -> (y,-x)
    static void rotateClockwise90Degrees(int[][] quad) {
        for (int i = 0; i < 4; i++) {
            int x = quad[i][0];
            int y = quad[i][1];
            quad[i][0] = y;
            quad[i][1] = -x;
        } // for i
    } // rotateClockwise90Degrees(int[][])
    //--------------------------------------------------------------------
    // Returns true if rays R(p0,p1) and R(p3,p2) are divergent, and false otherwise
    // - parallel rays are handled separately (by parallelAndEncloseInfinitelyManyPoints())
    static boolean divergent(int[][] quad, int currCase) {
        int x0 = quad[0][0];
        int y0 = quad[0][1];
        int x1 = quad[1][0];
        int y1 = quad[1][1];
        int x2 = quad[2][0];
        int y2 = quad[2][1];
        int x3 = quad[3][0];
        int y3 = quad[3][1];

        long[] slope01 = getSlope(x0, y0, x1, y1);
        long rise01 = slope01[0];
        long run01 = slope01[1];
        long[] slope23 = getSlope(x2, y2, x3, y3);
        long rise23 = slope23[0];
        long run23 = slope23[1];

        // NOTE: Slope is negative iff rise < 0.  On the other hand, slope >= 0 requires
        // rise >= 0 *and* run != 0 (since a vertical slope is indicated by [1,0])

        if (currCase == CASE_TOP) {
            // Subcase A: S(p0,p1) has negative slope
            if (rise01 < 0) {
                // Sub-subcase: S(p2,p3) has negative slope
                if (rise23 < 0 && rise01*run23 < rise23*run01) {   // slope01 < slope23 (but larger in abs value)
                    return true;
                } // else if
            } // if

            // Subcase B: S(p0,p1) is vertical
            else if (run01 == 0) {
                // Sub-subcase: S(p2,p3) has negative slope
                if (rise23 < 0) {
                    return true;
                } // if
            } // if

            // Subcase C: S(p0,p1) has positive slope
            else if (run01 != 0 && rise01 > 0) {
                // Sub-subcase(s): S(p2,p3) is vertical or has negative slope
                if (run23 == 0 || rise23 < 0) {
                    return true;
                } // if
                // Sub-subcase: S(p2,p3) has positive slope
                else if (run23 != 0 && rise23 > 0 && rise01*run23 < rise23*run01) {   // slope01 < slope23
                    return true;
                } // else if
            } // else if
        } // if

        if (currCase == CASE_TOP_RIGHT) {
            // Subcase A: S(p0,p1) is negative-slope-lower
            if (rise01 < 0 && y0 < y1) {
                // Sub-subcase: S(p2,p3) is negative-slope-lower
                if (rise23 < 0 && y3 < y2 && rise01*run23 < rise23*run01) {   // slope01 < slope23 (but larger in abs value)
                    return true;
                } // if
            } // if

            // Subcase B: S(p0,p1) is vertical
            else if (run01 == 0) {
                // Sub-subcase: S(p2,p3) is negative-slope-lower
                if (rise23 < 0 && y3 < y2) {
                    return true;
                } // if
            } // else if

            // Subcase C: S(p0,p1) has slope >= 0
            else if (run01 != 0 && rise01 >= 0) {
                // Sub-subcase(s): S(p2,p3) is vertical or negative-slope-lower
                if (run23 == 0 || (rise23 < 0 && y3 < y2)) {
                    return true;
                } // if
                // Sub-subcase: S(p2,p3) has positive slope (not 0)
                else if (rise23 > 0 && rise01*run23 < rise23*run01) {   // slope01 < slope23
                    return true;
                } // else if
            } // else if

            // Subcase D: S(p0,p1) is negative-slope-upper
            else if (rise01 < 0 && y0 > y1) {
                // Sub-subcase(s): S(p2,p3) is vertical or negative-slope-lower or has slope >= 0
                if (run23 == 0 || (rise23 < 0 && y3 < y2) || (run23 != 0 && rise23 >= 0)) {
                    return true;
                } // if
                // Sub-subcase: S(p2,p3) is negative-slope-upper
                if (rise23 < 0 && y3 > y2 && rise01*run23 < rise23*run01) {   // slope01 < slope23 (but larger in abs value)
                    return true;
                } // if
            } // else if
        } // if
        return false;
    } // divergent(int[][],int)
    //--------------------------------------------------------------------
    // Returns true if rays R(p0,p1) and R(p3,p2) are parallel, and false otherwise
    static boolean parallel(int[][] quad) {
        int x0 = quad[0][0];
        int y0 = quad[0][1];
        int x1 = quad[1][0];
        int y1 = quad[1][1];
        int x2 = quad[2][0];
        int y2 = quad[2][1];
        int x3 = quad[3][0];
        int y3 = quad[3][1];
        long[] slope01 = getSlope(x0, y0, x1, y1);
        long[] slope23 = getSlope(x2, y2, x3, y3);
        long rise01 = slope01[0];
        long run01 = slope01[1];
        long rise23 = slope23[0];
        long run23 = slope23[1];

        return rise01 == rise23 && run01 == run23;
    } // parallel(int[][])
    //--------------------------------------------------------------------
    // Returns true if rays R(p0,p1) and R(p3,p2) are parallel and enclose
    // infinitely many points, and false otherwise
    // - if parallel and don't enclose infinitely many points, then enclose zero points
    static boolean parallelAndEncloseInfinitelyManyPoints(int[][] quad, int currCase) {
        int x0 = quad[0][0];
        int y0 = quad[0][1];
        int x1 = quad[1][0];
        int y1 = quad[1][1];
        int x2 = quad[2][0];
        int y2 = quad[2][1];
        int x3 = quad[3][0];
        int y3 = quad[3][1];
        long[] slope01 = getSlope(x0, y0, x1, y1);
        long[] slope23 = getSlope(x2, y2, x3, y3);
        long rise01 = slope01[0];
        long run01 = slope01[1];
        long rise23 = slope23[0];
        long run23 = slope23[1];

        // Return false if rays are not parallel
        if (rise01 != rise23 || run01 != run23) {
            return false;
        } // if

        if (currCase == CASE_TOP) {
            // Subcase A: rays are distance >= 2 apart horizontally
            if (x1 - x2 >= 2) {
                return true;
            } // if

            // Subcase B: rays are distance 1 apart (horizontally)
            // The only way for the rays *not* to enclose infinitely many points is if:
            // (a) slope = +/- 1/m, where m is a positive integer
            //    or
            // (b) the rays are vertical, in which case rise = 1
            //     (since we use [rise, run] = [1, 0] for a vertical slope)
            else {
                return !(rise01 == 1 || rise01 == -1);
            } // else
        } // if

        else { // currCase == CASE_TOP_RIGHT
            // Subcase A: rays are vertical
            // Rays enclose infinitely many points iff they are distance >= 2 apart horizontally
            if (run01 == 0) {
                return x1 - x2 >= 2;
            } // if

            // Subcase B: rays are horizontal
            // Rays enclose infinitely many points iff they are distance >= 2 apart vertically
            else if (rise01 == 0) {
                return y2 - y1 >= 2;
            } // else if

            // Subcase C: rays are neither vertical nor horizontal
            else {
                // Find x-coord of point p where R(p0,p1) has y value = y2
                long pNumer = run01*(y2 - y1) + rise01*x1;
                long pDenom = rise01;
                // If negative-slope-lower or negative-slope-upper, then pDenom = rise01 < 0
                if (pDenom < 0) {
                    pNumer = -pNumer;
                    pDenom = -pDenom;   // now pDenom > 0
                } // if
                // Doesn't hurt to reduce pNumer/pDenom
                long g = gcd(Math.abs(pNumer), pDenom);
                pNumer /= g;
                pDenom /= g;

                long gapNumer = pNumer - x2*pDenom;
                long gapDenom = pDenom;
                // If negative-slope-upper, then gapNumer < 0
                if (rise01 < 0 && y0 > y1) {
                    gapNumer = -gapNumer;
                } // if
                g = gcd(gapNumer, gapDenom);
                gapNumer /= g;
                gapDenom /= g;
                return processParallelRays(gapNumer, gapDenom, rise01, run01);
            } // else
        } // else
    } // parallelAndEncloseInfinitelyManyPoints(int[][],int)
    //--------------------------------------------------------------------
    // Returns true if the two parallel rays specified by the input enclose
    // infinitely many points, and false otherwise
    // - one ray is anchored at (0, 0), the other at (gapNumer/gapDenom, 0)
    // - gapNumer/gapDenom > 0 (with gapNume > 0 and gapDenom > 0)
    // - slope of both rays is rise/run
    // - incoming slope is positive or negative (never 0 or infinite), so run > 0
    // - WLOG, if the slope is negative, we make it positive
    static boolean processParallelRays(long gapNumer, long gapDenom, long rise, long run) {
        if (gapNumer <= 0 || gapDenom <= 0 || rise == 0 || run <= 0) {
            throw new IllegalArgumentException("Inside processParallelRays(): at least one argument is <= 0");
        } // if

        // First, ensure slope is positive (WLOG)
        rise = Math.abs(rise);

        // Case 1: gapNumer/gapDenom > 1
        // - rays enclose infinitely many points
        if (gapNumer > gapDenom) {
            return true;
        } // if

        // Case 2: gapNumer/gapDenom = 1
        // - rays enclose infinitely many points iff slope is NOT equal to +/- 1/m, where m is a positive integer
        else if (gapNumer == gapDenom) {
            return !(rise == 1 || rise == -1);
        } // else if

        // Case 3: gapNumer/gapDenom < 1
        // - follow left ray and right ray upward until left ray is again at a point with integer coords
        // - at each integer y value, check whether an integer x value lies between the rays
        // - if this ever happens, then the rays enclose infinitely many points; otherwise they don't
        else { // gapNumer < gapDenom
            int yUpper = (int)Math.abs(rise);
            for (int y = 1; y < yUpper; y++) {
                long xLeftNumer = run*y;
                long xLeftDenom = rise;
                // If xLeftNumer/xLeftDenom is an integer, add 1; if not, round up, so also add 1
                long xLeftBumpUp = xLeftNumer/xLeftDenom + 1;

                long xRightNumer = gapNumer*rise + gapDenom*run*y;
                long xRightDenom = gapDenom*rise;
                long xRightBumpDown = xRightNumer/xRightDenom;
                if (xRightNumer % xRightDenom == 0) {   // xRightNumer/xRightDenom is an integer
                    xRightBumpDown--;
                } // if

                if (xLeftBumpUp <= xRightBumpDown) {
                    return true;
                } // if
            } // for y
            return false;
        } // else
    } // processParallelRays(long,long,long,long)
    //--------------------------------------------------------------------
    // Count the number of extension points when S(p1,p2) is horizontal
    // - only called when rays R(p0,p1) and R(p3,p2) are convergent
    static long countExtensionPointsTop(int[][] quad) {
        int x0 = quad[0][0];
        int y0 = quad[0][1];
        int x1 = quad[1][0];
        int y1 = quad[1][1];
        int x2 = quad[2][0];
        int y2 = quad[2][1];
        int x3 = quad[3][0];
        int y3 = quad[3][1];

        long[] slope01 = getSlope(x0, y0, x1, y1);
        long rise01 = slope01[0];
        long run01 = slope01[1];
        long[] slope23 = getSlope(x2, y2, x3, y3);
        long rise23 = slope23[0];
        long run23 = slope23[1];

        long numExtPoints = 0;

        long[] yCoord = yCoordOfIntersection(rise23, run23, x3, y3, rise01, run01, x0, y0);
        long yMeetNumer = yCoord[0];
        long yMeetDenom = yCoord[1];
        long yMeet;
        if (yMeetNumer % yMeetDenom == 0) {   // equivalently, yMeetDenom = 1
            yMeet = yMeetNumer/yMeetDenom - 1;
        } // if
        else {   // yMeetNumer/yMeetDenom is not an integer
            yMeet = yMeetNumer/yMeetDenom;   // rounds toward 0
            if (yMeetNumer < 0) {
                yMeet--;   // compensate for the fact that / rounded up (we want to round down here)
            } // if
        } // else

        for (long y = y1 + 1; y <= yMeet; y++) {   // NOTE: start at y1 + 1
            numExtPoints += countPointsBetween(y, rise23, run23, x3, y3, rise01, run01, x0, y0);
        } // for y

        return numExtPoints;
    } // countExtensionPointsTop(int[][])
    //--------------------------------------------------------------------
    // Count the number of extension points when S(p1,p2) is on top-right of hull
    // - only called when rays R(p0,p1) and R(p3,p2) are convergent
    static long countExtensionPointsTopRight(int[][] quad) {
        int x0 = quad[0][0];
        int y0 = quad[0][1];
        int x1 = quad[1][0];
        int y1 = quad[1][1];
        int x2 = quad[2][0];
        int y2 = quad[2][1];
        int x3 = quad[3][0];
        int y3 = quad[3][1];

        long[] slope01 = getSlope(x0, y0, x1, y1);
        long rise01 = slope01[0];
        long run01 = slope01[1];
        long[] slope23 = getSlope(x2, y2, x3, y3);
        long rise23 = slope23[0];
        long run23 = slope23[1];

        long[] slope12 = getSlope(x1, y1, x2, y2);
        long rise12 = slope12[0];
        long run12 = slope12[1];

        // NOTE: Slope is negative iff rise < 0.  On the other hand, slope >= 0 requires
        // rise >= 0 *and* run != 0 (since a vertical slope is indicated by [1,0])

        long numExtPoints = 0;

        long[] yCoord = yCoordOfIntersection(rise23, run23, x3, y3, rise01, run01, x0, y0);
        long yMeetNumer = yCoord[0];
        long yMeetDenom = yCoord[1];
        long yMeetFloor = yMeetNumer/yMeetDenom;   // rounds toward 0
        boolean yMeetIsInteger = yMeetNumer % yMeetDenom == 0;
        if (yMeetNumer < 0 && !yMeetIsInteger) {   // yMeet is negative and not an integer
            yMeetFloor--;   // compensate for the fact that / rounded up (we want to round down here)
        } // if

        // Subcase A: S(p0,p1) is negative-slope-lower or vertical or has positive slope
        if ((rise01 < 0 && y0 < y1) || (run01 == 0) || (rise01 > 0)) {
            // Sub-subcase(s): S(p2,p3) is negative-slope-upper or horizontal (so y1 < yMeet <= y2)
            if ((rise23 < 0 && y3 > y2) || rise23 == 0) {
                // If S(p2,p3) is horizontal, then yMeet = y2, so want yMeetFloor = y2 - 1
                if (rise23 == 0) {
                    yMeetFloor--;
                } // if
                // - lower part lies between S(p1,p2) on left and R(p0,p1) on right
                for (long y = y1 + 1; y <= yMeetFloor; y++) {   // NOTE: start at y1 + 1
                    numExtPoints += countPointsBetween(y, rise12, run12, x1, y1, rise01, run01, x0, y0);
                } // for y
                // - upper part lies between S(p1,p2) on left and R(p3,p2) on right
                for (long y = yMeetFloor + 1; y < y2; y++) {   // NOTE: < y2
                    numExtPoints += countPointsBetween(y, rise12, run12, x1, y1, rise23, run23, x3, y3);
                } // for y
            } // if

            // Sub-subcase: S(p2,p3) is negative-slope-lower or has positive slope (so yMeet > y2)
            // - S(p2,p3) cannot be vertical, since if only one of S(p0,p1), S(p2,p3) is vertical, it is always S(p0,p1) (see transformIfNecessary())
            // - if S(p2,p3) is negative-slopel-lower, then S(p0,p1) must also be, since R(p0,p1) and R(p3,p2) are convergent
            else if ((rise23 < 0 && y3 < y2) || (run23 != 0 && rise23 > 0)) {   // don't actually need to check run23 !== 0, since S(p2,p3) shouldn't be vertical here
                // - lower part lies between S(p1,p2) on left and R(p0,p1) on right
                for (long y = y1 + 1; y <= y2; y++) {   // NOTE: start at y1 + 1
                    numExtPoints += countPointsBetween(y, rise12, run12, x1, y1, rise01, run01, x0, y0);
                } // for y
                // - upper part lies between R(p3,p2) on left and R(p0,p1) on right
                long upperLimit = yMeetFloor;
                if (yMeetIsInteger) {
                    upperLimit--;
                } // if
                for (long y = y2 + 1; y <= upperLimit; y++) {   // NOTE: start at y2 + 1
                    numExtPoints += countPointsBetween(y, rise23, run23, x3, y3, rise01, run01, x0, y0);
                } // for y
            } // else if
        } // if

        // Subcase B: S(p0,p1) is horizontal
        else if (rise01 == 0) {
            // Sub-subcase: S(p2,p3) must be negative-slope-upper, since R(p0,p1) and R(p3,p2) are convergent
            // - points of interest lie between S(p1,p2) on left and R(p3,p2) on right
            for (long y = y1 + 1; y < y2; y++) {   // NOTE: start at y1 + 1, stop before y2
                numExtPoints += countPointsBetween(y, rise12, run12, x1, y1, rise23, run23, x3, y3);
            } // for y
        } // else if

        // Subcase C: S(p0,p1) is negative-slope-upper
        else if (rise01 < 0 && y0 > y1) {
            // Sub-subcase: S(p2,p3) must be negative-slope-upper, since R(p0,p1) and R(p3,p2) are convergent
            // - upper part lies between S(p1,p2) on left and R(p3,p2) on right
            for (long y = y1; y < y2; y++) {   // NOTE: include y1, exclude y2
                numExtPoints += countPointsBetween(y, rise12, run12, x1, y1, rise23, run23, x3, y3);
            } // for y
            // - lower part lies between R(p0,p1) on left and R(p3,p2) on right
            long lowerLimit = yMeetFloor;
            for (long y = lowerLimit + 1; y < y1; y++) {   // NOTE: start at lowerLimit + 1, exclue y1 (already included immediately above)
                numExtPoints += countPointsBetween(y, rise12, run12, x1, y1, rise23, run23, x3, y3);
            } // for y

        } // else if

        return numExtPoints;
    } // countExtensionPointsTopRight(int[][])
    //--------------------------------------------------------------------
    // Count points with integer coordinates that lie *strictly* between the left line and
    // the right line at height y
    // - handles cases in which one of the two lines is vertical:
    //    - if, e.g., left line is vertical, then riseL = 1, runL = 0
    //    - so xLNumer = 0 + riseL*xL and xLDenom = riseL, so xLNumer/xLDenom = xL (correct)
    // Assumption: neither line is horizontal (so riseL > 0 and riseR > 0)
    static long countPointsBetween(long y, long riseL, long runL, int xL, int yL, long riseR, long runR, int xR, int yR) {
        long numPoints = 0;
        long xLNumer = runL*(y - yL) + riseL*xL;
        long xLDenom = riseL;
        if (xLDenom < 0) {
            xLNumer = -xLNumer;
            xLDenom = -xLDenom;
        } // if
        long xRNumer = runR*(y - yR) + riseR*xR;
        long xRDenom = riseR;
        if (xRDenom < 0) {
            xRNumer = -xRNumer;
            xRDenom = -xRDenom;
        } // if
        boolean leftIsInteger = (xLNumer % xLDenom == 0);
        boolean rightIsInteger = (xRNumer % xRDenom == 0);
        long widthTrunc = (xLDenom*xRNumer - xLNumer*xRDenom)/(xLDenom*xRDenom);
        boolean widthIsInteger = (xLDenom*xRNumer - xLNumer*xRDenom) % (xLDenom*xRDenom) == 0;

        // In theory this should never happen
        if (widthIsInteger && widthTrunc == 0) {
            return 0;
        } // if

        if (widthIsInteger) {
            if (leftIsInteger && rightIsInteger) {   // would suffice to check one of leftIsInteger, rightIsInteger
                numPoints = widthTrunc - 1;
            } // if
            else {   // neither endpoint is an integer
                numPoints = widthTrunc;
            } // else
        } // if
        else {   // width is not an integer
            if (leftIsInteger || rightIsInteger) {   // at most one endpoint can be an integer
                numPoints = widthTrunc;
            } // if
            else {   // neither endpoint is an integer
                // ceiling the left endpoint
                long xLeftCeil = xLNumer/xLDenom;
                if (xLNumer > 0) {    // left endpoint is positive
                    xLeftCeil++;      // compensate for fact that / rounded down (toward 0)
                } // if
                // floor the right endpoint
                long xRightFloor = xRNumer/xRDenom;
                if (xRNumer < 0) {    // right endpoint is negative
                    xRightFloor--;    // compensate for the fact that / rounded up (toward 0)
                } // if
                numPoints = xRightFloor - xLeftCeil + 1;
            } // else
        } // else
        return numPoints;
    } // countPointsBetween(long,long,long,int,int,long,long,int,int)
    //--------------------------------------------------------------------
    // Returns y-coord of intersection between the two lines as a fraction [numer, denom]
    // in reduced form, with denom > 0
    // - handles cases in which one of the lines is vertical
    // - lines cannot be parallel
    static long[] yCoordOfIntersection(long riseL, long runL, int xL, int yL, long riseR, long runR, int xR, int yR) {
        long yMeetNumer;
        long yMeetDenom;

        // Case 1: neither line is vertical
        if (runL != 0 && runR != 0) {
            yMeetNumer = riseR*runR*runL*yL + riseR*riseL*runR*(xR - xL) - riseL*runR*runR*yR;
            yMeetDenom = runR*(riseR*runL - riseL*runR);
        } // if

        // Case 2: right line is vertical
        else if (runR == 0) {
            yMeetNumer = riseL*xR + runL*yL - riseL*xL;
            yMeetDenom = runL;
        } // else if

        // Case 3: left line is vertical
        else {   // runL == 0
            yMeetNumer = riseR*xL + runR*yR - riseR*xR;
            yMeetDenom = runR;
        } // else

        if (yMeetDenom < 0) {
            yMeetNumer = -yMeetNumer;
            yMeetDenom = -yMeetDenom;
        } // if
        long g = gcd(Math.abs(yMeetNumer), yMeetDenom);
        yMeetNumer /= g;
        yMeetDenom /= g;
        return new long[]{yMeetNumer, yMeetDenom};
    } // yCoordOfIntersection(long,long,int,int,long,long,int,int)
    //--------------------------------------------------------------------
    // Returns a length-2 array containing the slope of the line through
    // (x1,y2) and (x2,y2) (in the form [rise, run]).  The slope is a fraction,
    // rise/run, in reduced form, with the convention that the denominator
    // is never negative.  A vertical line is assigned slope 1/0 (never -1/0).
    // - Assumption: (x1,y1) != (x2,y2) (in which case slope is undefined)
    // - returns an array of long to help with any overflow avoidance later
    static long[] getSlope(int x1, int y1, int x2, int y2) {
        long rise = y2 - y1;
        long run = x2 - x1;
        if (run == 0) {   // special case: x1 == x2
            return new long[]{1, 0};
        } // if
        else {
            if (run < 0) {   // convention:  run should always be positive
                rise = -rise;
                run = -run;
            } // if
            long g = gcd(Math.abs(rise), run);
            rise /= g;
            run /= g;
            return new long[]{rise, run};
        } // else
    } // getSlope(int,int,int,int)
    //--------------------------------------------------------------------
    // Assumption:  a,b >= 0, not both 0
    static long gcd(long a, long b) {
        if (a < 0 || b < 0 || (a == 0 && b == 0)) {
            throw new IllegalArgumentException("gcd() called with invalid arguments.");
        } // if
        while (b != 0) {
            long rem = a % b;
            a = b;
            b = rem;
        } // while
        return a;
    } // gcd(long,long)
    //--------------------------------------------------------------------
    static void printTransformed(int[][] quad) {
        System.out.print("p0 = (" + quad[0][0] + "," + quad[0][1] + ") ");
        System.out.print("p1 = (" + quad[1][0] + "," + quad[1][1] + ") ");
        System.out.print("p2 = (" + quad[2][0] + "," + quad[2][1] + ") ");
        System.out.println("p3 = (" + quad[3][0] + "," + quad[3][1] + ")");
    } // printTransformed(int[])
    //--------------------------------------------------------------------
} // class ConvexKeliher


详细

Test #1:

score: 100
Accepted
time: 51ms
memory: 48756kb

input:

5
0 2
-2 0
-1 -3
1 -3
2 1

output:

23

result:

ok single line: '23'

Test #2:

score: 0
Accepted
time: 51ms
memory: 49820kb

input:

4
-7 -7
7 -7
7 7
-7 7

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #3:

score: 0
Accepted
time: 44ms
memory: 48788kb

input:

4
-1000 1000
-1000 999
-999 999
-999 1000

output:

0

result:

ok single line: '0'

Test #4:

score: 0
Accepted
time: 124ms
memory: 51164kb

input:

6
0 -901
900 -900
900 900
0 901
-900 900
-900 -900

output:

1457999998

result:

ok single line: '1457999998'

Test #5:

score: 0
Accepted
time: 131ms
memory: 54508kb

input:

6
900 -900
901 0
900 900
-900 900
-901 0
-900 -900

output:

1457999998

result:

ok single line: '1457999998'

Test #6:

score: 0
Accepted
time: 59ms
memory: 49004kb

input:

6
0 0
400 1
400 2
0 3
-400 2
-400 1

output:

1596

result:

ok single line: '1596'

Test #7:

score: 0
Accepted
time: 151ms
memory: 54532kb

input:

6
0 -901
900 -899
900 900
0 901
-900 900
-900 -899

output:

970921796

result:

ok single line: '970921796'

Test #8:

score: 0
Accepted
time: 53ms
memory: 52376kb

input:

6
2 -2
401 399
399 401
-2 2
-401 -399
-399 -401

output:

4794

result:

ok single line: '4794'

Test #9:

score: 0
Accepted
time: 54ms
memory: 46684kb

input:

6
399 -401
401 -399
2 2
-399 401
-401 399
-2 -2

output:

4794

result:

ok single line: '4794'

Test #10:

score: 0
Accepted
time: 43ms
memory: 48840kb

input:

4
-1 -1
-2 -2
-2 -3
-1 -2

output:

0

result:

ok single line: '0'

Test #11:

score: 0
Accepted
time: 41ms
memory: 49332kb

input:

4
0 0
0 1
-1 2
-1 1

output:

0

result:

ok single line: '0'

Test #12:

score: 0
Accepted
time: 55ms
memory: 52724kb

input:

48
5 -70
14 -68
22 -66
31 -63
39 -58
46 -52
52 -46
58 -39
63 -31
66 -22
68 -14
70 -5
70 5
68 14
66 22
63 31
58 39
52 46
46 52
39 58
31 63
22 66
14 68
5 70
-5 70
-14 68
-22 66
-31 63
-39 58
-46 52
-52 46
-58 39
-63 31
-66 22
-68 14
-70 5
-70 -5
-68 -14
-66 -22
-63 -31
-58 -39
-52 -46
-46 -52
-39 -58
...

output:

36

result:

ok single line: '36'

Test #13:

score: 0
Accepted
time: 46ms
memory: 48616kb

input:

4
-10 -10
-11 11
-11 10
-10 -11

output:

0

result:

ok single line: '0'

Test #14:

score: 0
Accepted
time: 61ms
memory: 50140kb

input:

4
10 -10
10 -11
11 10
11 11

output:

0

result:

ok single line: '0'

Test #15:

score: 0
Accepted
time: 43ms
memory: 48436kb

input:

4
5 5
6 5
-5 6
-6 6

output:

0

result:

ok single line: '0'

Test #16:

score: 0
Accepted
time: 57ms
memory: 51040kb

input:

4
100 -99
-99 -98
-100 -98
99 -99

output:

0

result:

ok single line: '0'

Test #17:

score: 0
Accepted
time: 55ms
memory: 53400kb

input:

4
0 1
-1 0
0 -1
1 0

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #18:

score: 0
Accepted
time: 44ms
memory: 48996kb

input:

4
-1000 0
0 -1000
1000 0
0 1000

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #19:

score: 0
Accepted
time: 51ms
memory: 49044kb

input:

4
-1000 1000
-1000 -1000
1000 -1000
1000 1000

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #20:

score: 0
Accepted
time: 51ms
memory: 48236kb

input:

4
0 0
0 2
-1 2
-1 1

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #21:

score: 0
Accepted
time: 58ms
memory: 48700kb

input:

4
-3 -2
-4 -2
-4 -3
-3 -4

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #22:

score: 0
Accepted
time: 53ms
memory: 52804kb

input:

4
6 -2
5 -2
4 -3
6 -3

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #23:

score: 0
Accepted
time: 44ms
memory: 48520kb

input:

48
4 -60
12 -59
19 -57
26 -54
33 -50
39 -45
45 -39
50 -33
54 -26
57 -19
59 -12
60 -4
60 4
59 12
57 19
54 26
50 33
45 39
39 45
33 50
26 54
19 57
12 59
4 60
-4 60
-12 59
-19 57
-26 54
-33 50
-39 45
-45 39
-50 33
-54 26
-57 19
-59 12
-60 4
-60 -4
-59 -12
-57 -19
-54 -26
-50 -33
-45 -39
-39 -45
-33 -50
...

output:

40

result:

ok single line: '40'

Test #24:

score: 0
Accepted
time: 32ms
memory: 53080kb

input:

4
7 3
7 4
5 4
6 3

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #25:

score: 0
Accepted
time: 51ms
memory: 49844kb

input:

4
-1000 0
-999 -1000
-998 0
-999 1000

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #26:

score: 0
Accepted
time: 57ms
memory: 52536kb

input:

4
0 -1000
1000 -999
0 -998
-1000 -999

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #27:

score: 0
Accepted
time: 42ms
memory: 48572kb

input:

3
999 -1000
1000 -1000
1000 -999

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #28:

score: 0
Accepted
time: 44ms
memory: 48560kb

input:

3
-2 -1
-2 -2
-1 -2

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #29:

score: 0
Accepted
time: 48ms
memory: 49504kb

input:

3
-1 0
0 1
-1 1

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #30:

score: 0
Accepted
time: 62ms
memory: 50020kb

input:

3
5 0
5 1
4 1

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #31:

score: 0
Accepted
time: 36ms
memory: 53152kb

input:

3
-777 -777
777 776
0 0

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #32:

score: 0
Accepted
time: 46ms
memory: 51616kb

input:

3
42 -13
42 -14
44 -13

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #33:

score: 0
Accepted
time: 52ms
memory: 53208kb

input:

3
-123 55
-122 57
-123 57

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #34:

score: 0
Accepted
time: 53ms
memory: 51020kb

input:

48
7 -99
19 -98
32 -94
44 -89
55 -83
66 -75
75 -66
83 -55
89 -44
94 -32
98 -19
99 -7
99 7
98 19
94 32
89 44
83 55
75 66
66 75
55 83
44 89
32 94
19 98
7 99
-7 99
-19 98
-32 94
-44 89
-55 83
-66 75
-75 66
-83 55
-89 44
-94 32
-98 19
-99 7
-99 -7
-98 -19
-94 -32
-89 -44
-83 -55
-75 -66
-66 -75
-55 -83
...

output:

156

result:

ok single line: '156'

Test #35:

score: 0
Accepted
time: 127ms
memory: 49628kb

input:

5
0 -1000
1000 -999
999 1000
-1000 1000
-1000 -999

output:

7986005002

result:

ok single line: '7986005002'

Test #36:

score: 0
Accepted
time: 134ms
memory: 49112kb

input:

6
-999 1000
-1000 0
-999 -1000
999 -1000
999 -1
998 999

output:

2992004004

result:

ok single line: '2992004004'

Test #37:

score: 0
Accepted
time: 50ms
memory: 48728kb

input:

12
-923 -771
-612 -869
778 -976
933 -289
930 553
907 731
845 822
324 920
-913 699
-957 596
-967 269
-946 -455

output:

609372

result:

ok single line: '609372'

Test #38:

score: 0
Accepted
time: 53ms
memory: 52788kb

input:

9
-497 -908
741 -696
978 -393
892 690
863 986
-510 934
-672 659
-972 60
-963 -762

output:

1867855

result:

ok single line: '1867855'

Test #39:

score: 0
Accepted
time: 58ms
memory: 48724kb

input:

21
-804 -988
-393 -993
806 -997
893 -982
986 -870
996 -744
1000 -268
1000 194
999 638
997 666
971 928
957 943
828 989
778 992
501 997
-692 1000
-964 991
-990 936
-993 521
-995 -929
-965 -956

output:

34183

result:

ok single line: '34183'

Test #40:

score: 0
Accepted
time: 61ms
memory: 49116kb

input:

15
-947 -801
-516 -997
427 -998
541 -998
566 -997
927 -966
990 -932
998 471
991 896
817 964
536 997
-715 998
-868 922
-993 664
-958 -492

output:

170756

result:

ok single line: '170756'

Test #41:

score: 0
Accepted
time: 242ms
memory: 55080kb

input:

5
1000 998
-999 1000
-1000 999
-998 -999
999 -1000

output:

5326010345

result:

ok single line: '5326010345'

Test #42:

score: 0
Accepted
time: 45ms
memory: 49104kb

input:

8
0 2
0 1
1 0
2 0
3 1
3 2
2 3
1 3

output:

0

result:

ok single line: '0'

Test #43:

score: 0
Accepted
time: 152ms
memory: 51128kb

input:

5
1000 0
999 1000
-1000 999
-1000 -1000
999 -1000

output:

7986005002

result:

ok single line: '7986005002'

Test #44:

score: 0
Accepted
time: 136ms
memory: 50064kb

input:

5
0 1000
-1000 999
-999 -1000
1000 -1000
1000 999

output:

7986005002

result:

ok single line: '7986005002'

Test #45:

score: 0
Accepted
time: 55ms
memory: 53260kb

input:

4
1000 1000
999 1000
999 999
1000 999

output:

0

result:

ok single line: '0'

Test #46:

score: 0
Accepted
time: 165ms
memory: 50500kb

input:

5
-1000 0
-999 -1000
1000 -999
1000 1000
-999 1000

output:

7986005002

result:

ok single line: '7986005002'

Test #47:

score: 0
Accepted
time: 60ms
memory: 50584kb

input:

50
883 0
876 110
855 219
820 325
773 425
714 519
643 604
562 680
473 745
375 798
272 839
165 867
55 881
-55 881
-165 867
-272 839
-375 798
-473 745
-562 680
-643 604
-714 519
-773 425
-820 325
-855 219
-876 110
-883 0
-876 -110
-855 -219
-820 -325
-773 -425
-714 -519
-643 -604
-562 -680
-473 -745
-3...

output:

19136

result:

ok single line: '19136'

Test #48:

score: 0
Accepted
time: 56ms
memory: 51292kb

input:

49
750 0
743 95
725 190
695 281
653 368
601 448
538 521
467 586
388 641
303 685
213 719
119 740
24 749
-72 746
-166 731
-259 703
-346 664
-429 615
-504 555
-571 486
-628 409
-675 325
-711 236
-736 143
-748 48
-748 -48
-736 -143
-711 -236
-675 -325
-628 -409
-571 -486
-504 -555
-429 -615
-346 -664
-2...

output:

14376

result:

ok single line: '14376'

Test #49:

score: 0
Accepted
time: 54ms
memory: 50948kb

input:

42
1000 0
988 149
955 294
900 433
826 563
733 680
623 781
500 866
365 930
222 974
74 997
-74 997
-222 974
-365 930
-499 866
-623 781
-733 680
-826 563
-900 433
-955 294
-988 149
-1000 0
-988 -149
-955 -294
-900 -433
-826 -563
-733 -680
-623 -781
-500 -866
-365 -930
-222 -974
-74 -997
74 -997
222 -97...

output:

34900

result:

ok single line: '34900'

Test #50:

score: 0
Accepted
time: 47ms
memory: 51060kb

input:

33
100 0
98 18
92 37
84 54
72 69
58 81
41 90
23 97
4 99
-14 98
-32 94
-49 86
-65 75
-78 61
-88 45
-95 28
-99 9
-99 -9
-95 -28
-88 -45
-78 -61
-65 -75
-50 -86
-32 -94
-14 -98
4 -99
23 -97
41 -90
58 -81
72 -69
84 -54
92 -37
98 -18

output:

515

result:

ok single line: '515'

Test #51:

score: 0
Accepted
time: 51ms
memory: 49232kb

input:

25
500 0
484 124
438 240
364 342
267 422
154 475
31 499
-93 491
-212 452
-318 385
-404 293
-464 184
-496 62
-496 -62
-464 -184
-404 -293
-318 -385
-212 -452
-93 -491
31 -499
154 -475
267 -422
364 -342
438 -240
484 -124

output:

24994

result:

ok single line: '24994'

Test #52:

score: 0
Accepted
time: 57ms
memory: 48460kb

input:

19
900 0
851 292
710 552
492 753
220 872
-74 896
-361 824
-609 662
-791 428
-887 148
-887 -148
-791 -428
-609 -662
-361 -824
-74 -896
220 -872
492 -753
710 -552
851 -292

output:

142538

result:

ok single line: '142538'

Test #53:

score: 0
Accepted
time: 63ms
memory: 54928kb

input:

7
800 0
498 625
-178 779
-720 347
-720 -347
-178 -779
498 -625

output:

1054757

result:

ok single line: '1054757'

Test #54:

score: 0
Accepted
time: 57ms
memory: 50032kb

input:

6
999 0
499 865
-499 865
-999 0
-499 -865
499 -865

output:

2588522

result:

ok single line: '2588522'

Test #55:

score: 0
Accepted
time: 48ms
memory: 52692kb

input:

5
1000 0
309 951
-809 587
-809 -587
309 -951

output:

5311708

result:

ok single line: '5311708'

Test #56:

score: 0
Accepted
time: 46ms
memory: 48776kb

input:

4
999 -999
999 -1000
1000 -1000
1000 -999

output:

0

result:

ok single line: '0'

Test #57:

score: 0
Accepted
time: 57ms
memory: 49364kb

input:

5
6 4
5 10
4 13
5 7
6 3

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #58:

score: 0
Accepted
time: 47ms
memory: 48828kb

input:

5
-4 6
-10 5
-13 4
-7 5
-3 6

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #59:

score: 0
Accepted
time: 49ms
memory: 51152kb

input:

5
-6 -4
-5 -10
-4 -13
-5 -7
-6 -3

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #60:

score: 0
Accepted
time: 49ms
memory: 52624kb

input:

5
4 -6
10 -5
13 -4
7 -5
3 -6

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #61:

score: 0
Accepted
time: 64ms
memory: 50516kb

input:

5
-6 4
-6 3
-5 7
-4 13
-5 10

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #62:

score: 0
Accepted
time: 59ms
memory: 49068kb

input:

5
-4 -6
-3 -6
-7 -5
-13 -4
-10 -5

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #63:

score: 0
Accepted
time: 48ms
memory: 52924kb

input:

5
6 -4
6 -3
5 -7
4 -13
5 -10

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #64:

score: 0
Accepted
time: 55ms
memory: 48244kb

input:

5
4 6
3 6
7 5
13 4
10 5

output:

infinitely many

result:

ok single line: 'infinitely many'

Test #65:

score: 0
Accepted
time: 46ms
memory: 52364kb

input:

4
-800 -100
-799 -103
-798 -105
-799 -102

output:

0

result:

ok single line: '0'

Test #66:

score: 0
Accepted
time: 48ms
memory: 48500kb

input:

4
602 -59
600 -60
603 -59
605 -58

output:

0

result:

ok single line: '0'

Test #67:

score: 0
Accepted
time: 49ms
memory: 48516kb

input:

4
-999 -999
-1000 -999
-1000 -1000
-999 -1000

output:

0

result:

ok single line: '0'

Test #68:

score: 0
Accepted
time: 46ms
memory: 52688kb

input:

4
-50 50
-52 51
-51 50
-49 49

output:

0

result:

ok single line: '0'

Test #69:

score: 0
Accepted
time: 54ms
memory: 48812kb

input:

4
5 0
6 0
7 1
6 1

output:

0

result:

ok single line: '0'

Test #70:

score: 0
Accepted
time: 47ms
memory: 48248kb

input:

4
3 -3
4 -4
5 -4
4 -3

output:

0

result:

ok single line: '0'