QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#233788#7512. Almost Prefix Concatenationucup-team1516WA 0ms10000kbC++2017.0kb2023-10-31 23:05:062023-10-31 23:05:06

Judging History

你现在查看的是最新测评结果

  • [2023-10-31 23:05:06]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:10000kb
  • [2023-10-31 23:05:06]
  • 提交

answer

#include<bits/stdc++.h>

#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>

namespace atcoder {

namespace internal {

std::vector<int> sa_naive(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n);
    std::iota(sa.begin(), sa.end(), 0);
    std::sort(sa.begin(), sa.end(), [&](int l, int r) {
        if (l == r) return false;
        while (l < n && r < n) {
            if (s[l] != s[r]) return s[l] < s[r];
            l++;
            r++;
        }
        return l == n;
    });
    return sa;
}

std::vector<int> sa_doubling(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n), rnk = s, tmp(n);
    std::iota(sa.begin(), sa.end(), 0);
    for (int k = 1; k < n; k *= 2) {
        auto cmp = [&](int x, int y) {
            if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
            int rx = x + k < n ? rnk[x + k] : -1;
            int ry = y + k < n ? rnk[y + k] : -1;
            return rx < ry;
        };
        std::sort(sa.begin(), sa.end(), cmp);
        tmp[sa[0]] = 0;
        for (int i = 1; i < n; i++) {
            tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
        }
        std::swap(tmp, rnk);
    }
    return sa;
}

// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
    int n = int(s.size());
    if (n == 0) return {};
    if (n == 1) return {0};
    if (n == 2) {
        if (s[0] < s[1]) {
            return {0, 1};
        } else {
            return {1, 0};
        }
    }
    if (n < THRESHOLD_NAIVE) {
        return sa_naive(s);
    }
    if (n < THRESHOLD_DOUBLING) {
        return sa_doubling(s);
    }

    std::vector<int> sa(n);
    std::vector<bool> ls(n);
    for (int i = n - 2; i >= 0; i--) {
        ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
    }
    std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
    for (int i = 0; i < n; i++) {
        if (!ls[i]) {
            sum_s[s[i]]++;
        } else {
            sum_l[s[i] + 1]++;
        }
    }
    for (int i = 0; i <= upper; i++) {
        sum_s[i] += sum_l[i];
        if (i < upper) sum_l[i + 1] += sum_s[i];
    }

    auto induce = [&](const std::vector<int>& lms) {
        std::fill(sa.begin(), sa.end(), -1);
        std::vector<int> buf(upper + 1);
        std::copy(sum_s.begin(), sum_s.end(), buf.begin());
        for (auto d : lms) {
            if (d == n) continue;
            sa[buf[s[d]]++] = d;
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        sa[buf[s[n - 1]]++] = n - 1;
        for (int i = 0; i < n; i++) {
            int v = sa[i];
            if (v >= 1 && !ls[v - 1]) {
                sa[buf[s[v - 1]]++] = v - 1;
            }
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        for (int i = n - 1; i >= 0; i--) {
            int v = sa[i];
            if (v >= 1 && ls[v - 1]) {
                sa[--buf[s[v - 1] + 1]] = v - 1;
            }
        }
    };

    std::vector<int> lms_map(n + 1, -1);
    int m = 0;
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms_map[i] = m++;
        }
    }
    std::vector<int> lms;
    lms.reserve(m);
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms.push_back(i);
        }
    }

    induce(lms);

    if (m) {
        std::vector<int> sorted_lms;
        sorted_lms.reserve(m);
        for (int v : sa) {
            if (lms_map[v] != -1) sorted_lms.push_back(v);
        }
        std::vector<int> rec_s(m);
        int rec_upper = 0;
        rec_s[lms_map[sorted_lms[0]]] = 0;
        for (int i = 1; i < m; i++) {
            int l = sorted_lms[i - 1], r = sorted_lms[i];
            int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
            int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
            bool same = true;
            if (end_l - l != end_r - r) {
                same = false;
            } else {
                while (l < end_l) {
                    if (s[l] != s[r]) {
                        break;
                    }
                    l++;
                    r++;
                }
                if (l == n || s[l] != s[r]) same = false;
            }
            if (!same) rec_upper++;
            rec_s[lms_map[sorted_lms[i]]] = rec_upper;
        }

        auto rec_sa =
            sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

        for (int i = 0; i < m; i++) {
            sorted_lms[i] = lms[rec_sa[i]];
        }
        induce(sorted_lms);
    }
    return sa;
}

}  // namespace internal

std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
    assert(0 <= upper);
    for (int d : s) {
        assert(0 <= d && d <= upper);
    }
    auto sa = internal::sa_is(s, upper);
    return sa;
}

template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
    int n = int(s.size());
    std::vector<int> idx(n);
    iota(idx.begin(), idx.end(), 0);
    sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
    std::vector<int> s2(n);
    int now = 0;
    for (int i = 0; i < n; i++) {
        if (i && s[idx[i - 1]] != s[idx[i]]) now++;
        s2[idx[i]] = now;
    }
    return internal::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return internal::sa_is(s2, 255);
}

// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
                           const std::vector<int>& sa) {
    int n = int(s.size());
    assert(n >= 1);
    std::vector<int> rnk(n);
    for (int i = 0; i < n; i++) {
        rnk[sa[i]] = i;
    }
    std::vector<int> lcp(n - 1);
    int h = 0;
    for (int i = 0; i < n; i++) {
        if (h > 0) h--;
        if (rnk[i] == 0) continue;
        int j = sa[rnk[i] - 1];
        for (; j + h < n && i + h < n; h++) {
            if (s[j + h] != s[i + h]) break;
        }
        lcp[rnk[i] - 1] = h;
    }
    return lcp;
}

std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return lcp_array(s2, sa);
}

// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
    int n = int(s.size());
    if (n == 0) return {};
    std::vector<int> z(n);
    z[0] = 0;
    for (int i = 1, j = 0; i < n; i++) {
        int& k = z[i];
        k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
        while (i + k < n && s[k] == s[i + k]) k++;
        if (j + z[j] < i + z[i]) j = i;
    }
    z[0] = n;
    return z;
}

std::vector<int> z_algorithm(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return z_algorithm(s2);
}

}  // namespace atcoder


#include <algorithm>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <vector>

namespace atcoder {

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
    segtree() : segtree(0) {}
    segtree(int n) : segtree(std::vector<S>(n, e())) {}
    segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder

using namespace std;
using namespace atcoder;
#define ll long long
#define ull unsigned long long
#define db double
#define pii pair<int,int>
#define pli pair<ll,int>
#define pil pair<int,ll>
#define pll pair<ll,ll>
#define ti3 tuple<int,int,int>
#define int128 __int128_t
#define pii128 pair<int128,int128>
const int inf = 1 << 30;
const ll linf = 1e18;
const ll mod = 998244353;
const db EPS = 1e-10;
const db pi = acos(-1);
template<class T> bool chmin(T& x, T y){
    if(x > y) {
        x = y;
        return true;
    } else return false;
}
template<class T> bool chmax(T& x, T y){
    if(x < y) {
        x = y;
        return true;
    } else return false;
}

// overload macro
#define CAT( A, B ) A ## B
#define SELECT( NAME, NUM ) CAT( NAME, NUM )

#define GET_COUNT( _1, _2, _3, _4, _5, _6 /* ad nauseam */, COUNT, ... ) COUNT
#define VA_SIZE( ... ) GET_COUNT( __VA_ARGS__, 6, 5, 4, 3, 2, 1 )

#define VA_SELECT( NAME, ... ) SELECT( NAME, VA_SIZE(__VA_ARGS__) )(__VA_ARGS__)

// rep(overload)
#define rep( ... ) VA_SELECT(rep, __VA_ARGS__)
#define rep2(i, n) for (int i = 0; i < int(n); i++)
#define rep3(i, a, b) for (int i = a; i < int(b); i++)
#define rep4(i, a, b, c) for (int i = a; i < int(b); i += c)

// repll(overload)
#define repll( ... ) VA_SELECT(repll, __VA_ARGS__)
#define repll2(i, n) for (ll i = 0; i < (ll)(n); i++)
#define repll3(i, a, b) for (ll i = a; i < (ll)(b); i++)
#define repll4(i, a, b, c) for (ll i = a; i < (ll)(b); i += c)

// rrep(overload)
#define rrep( ... ) VA_SELECT(rrep, __VA_ARGS__)    
#define rrep2(i, n) for (int i = n - 1; i >= 0; i--)
#define rrep3(i, a, b) for (int i = b - 1; i >= a; i--)
#define rrep4(i, a, b, c) for (int i = b - 1; i >= a; i -= c)

// rrepll(overload)
#define rrepll( ... ) VA_SELECT(rrepll, __VA_ARGS__)
#define rrepll2(i, n) for (ll i = (ll)(n) - 1; i >= 0ll; i--)
#define rrepll3(i, a, b) for (ll i = b - 1; i >= (ll)(a); i--)
#define rrepll4(i, a, b, c) for (ll i = b - 1; i >= (ll)(a); i -= c)

// for_earh
#define fore(e, v) for (auto&& e : v)

// vector
#define all(v) v.begin(), v.end()
#define rall(v) v.rbegin(), v.rend()

template<long long mod>
struct modint{
    long long num;

    constexpr modint(long long x = 0) : num((x + mod) % mod) {}

    constexpr modint &operator += (const modint& rhs){
        num = (num + rhs.num) % mod;
        return *this;
    }
    constexpr modint &operator -= (const modint& rhs){
        num  -= rhs.num;
        while(num < 0) num += mod;
        num %= mod;
        return *this;
    }
    constexpr modint &operator *= (const modint& rhs){
        num = num * rhs.num % mod;
        return *this;
    }
    constexpr modint &operator /= (modint rhs){
        int exp = mod - 2;
        while(exp > 0){
            if(exp % 2){
                *this *= rhs;
            }
            rhs *= rhs;
            exp /= 2;
        }
        return *this;
    }

    constexpr modint operator ++ (){
        num = (num + 1) % mod;
        return *this;
    }
    constexpr modint operator ++ (int n){
        (void)n;
        modint tmp = *this;
        ++(*this);
        return tmp;
    }
    constexpr modint operator -- (){
        num = (num + mod - 1) % mod;
        return *this;
    }
    constexpr modint operator -- (int n){
        (void)n;
        const modint tmp = *this;
        --(*this);
        return tmp;
    }

    void modpow(ll y){
        modint tmp = (*this);
        (*this) = 1;
        while(y > 0){
            if(y % 2){
                (*this) *= tmp;
            }
            tmp *= tmp;
            y /= 2;
        }
    }

    constexpr modint operator + (const modint& rhs) const {
        return modint(*this) += rhs;
    }
    constexpr modint operator - (const modint& rhs) const {
        return modint(*this) -= rhs;
    }
    constexpr modint operator * (const modint& rhs) const {
        return modint(*this) *= rhs;
    }
    constexpr modint operator / (const modint& rhs) const {
        return modint(*this) /= rhs;
    }

    
    friend ostream &operator << (ostream& lhs, const modint& rhs){
        return lhs << rhs.num;
    }

    friend istream &operator >> (istream& lhs, modint& rhs){
        lhs >> rhs.num;
        return lhs;
    }
};

#define mint modint<mod>

mint modpow(mint x, ll y){
    if(y == 0) return 1;
    mint e = modpow(x, y / 2);
    e = e * e;
    return e * (y % 2 == 0 ? 1 : x);
}

int op(int a, int b) {
    return min(a, b);
}

int e() {
    return inf;
}

string S, T;
int sidx[1000010], tidx[1000010], lens[1000010];
mint nsum[1000010], cnt[1000010], ans[1000010];
int main() {
    cin.tie(nullptr);
    ios_base::sync_with_stdio(false);
    cout << fixed << setprecision(20);
    cin >> S >> T;
    string ST = S + "#" + T;
    auto sa = suffix_array(ST);
    auto lcp = lcp_array(ST, sa);
    segtree<int, op, e> st(lcp);
    rep (i, sa.size()) {
        if (sa[i] == (int)S.size()) continue;
        else if (sa[i] < (int)S.size()) sidx[sa[i]] = i;
        else tidx[sa[i] - S.size() - 1] = i;
    }

    cnt[0]++, cnt[1]--;
    rep (i, S.size()) {
        int len = st.prod(min(sidx[i], tidx[0]), max(sidx[i], tidx[0]));
        if (len < (int)min(S.size() - i, T.size())) len++;
        if (len < (int)min(S.size() - i, T.size())) len += st.prod(min(sidx[i + len], tidx[len]), max(sidx[i + len], tidx[len]));
        cnt[i + 1] += cnt[i];
        cnt[i + len + 1] -= cnt[i];

        nsum[i + 1] += nsum[i] + cnt[i];
        nsum[i + len + 1] -= nsum[i] + cnt[i];

        cnt[i + 1] += cnt[i];
        nsum[i + 1] += nsum[i];

        lens[i] = len;
    }

    rep (i, S.size()) {
        int len = lens[i];
        ans[i + 1] += ans[i] + nsum[i] * 2 + cnt[i];
        ans[i + len + 1] -= ans[i] + nsum[i] * 2 + cnt[i];
        ans[i + 1] += ans[i];
        cout << cnt[i] << ' ' << nsum[i] << endl;
    }

    cout << ans[S.size()] << endl;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 0
Wrong Answer
time: 0ms
memory: 10000kb

input:

ababaab
aba

output:

1 0
1 1
2 3
3 6
5 14
7 24
12 50
473

result:

wrong answer 1st numbers differ - expected: '473', found: '1'