QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#228972#7632. Balanced Arraysucup-team112#AC ✓112ms40620kbC++1716.3kb2023-10-28 14:41:412023-10-28 14:41:42

Judging History

你现在查看的是最新测评结果

  • [2023-10-28 14:41:42]
  • 评测
  • 测评结果:AC
  • 用时:112ms
  • 内存:40620kb
  • [2023-10-28 14:41:41]
  • 提交

answer

//#define _GLIBCXX_DEBUG

//#pragma GCC target("avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")

#include<bits/stdc++.h>
using namespace std;


#ifdef LOCAL
#include <debug_print.hpp>
#define OUT(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define OUT(...) (static_cast<void>(0))
#endif

#define endl '\n'
#define lfs cout<<fixed<<setprecision(15)
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()
#define UNIQUE(a) (a).erase(unique((a).begin(),(a).end()),(a).end())
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD1 = 1e9+7;
const ll MOD9 = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T> using PQ = priority_queue<T>;
template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;
template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}
template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}  
template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);};  
template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};
template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};
template<typename T>void debug(const vector<T>&v){debug(v,v.size());}
template<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}
template<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop_front();}cout<<endl;}
template<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<" ";cout<<endl;}
template<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<"["<<z.first<<"]="<<z.second<<",";cout<<endl;}
template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}
vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};
template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}
template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << "(" << p.first << "," << p.second << ")";}
template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){os<<"[";for(auto &z:v)os << z << ",";os<<"]"; return os;}
template<typename T>void rearrange(vector<int>&ord, vector<T>&v){
  auto tmp = v;
  for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];
}
template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){
  rearrange(ord, head);
  rearrange(ord, tail...);
}
template<typename T> vector<int> ascend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],i)<make_pair(v[j],j);});
  return ord;
}
template<typename T> vector<int> descend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],-i)>make_pair(v[j],-j);});
  return ord;
}
template<typename T> vector<T> inv_perm(const vector<T>&ord){
  vector<T>inv(ord.size());
  for(int i=0;i<ord.size();i++)inv[ord[i]] = i;
  return inv;
}
ll FLOOR(ll n,ll div){assert(div>0);return n>=0?n/div:(n-div+1)/div;}
ll CEIL(ll n,ll div){assert(div>0);return n>=0?(n+div-1)/div:n/div;}
ll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;}
ll modulo(ll n,ll d){return (n%d+d)%d;};
template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}
template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}
template<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};
template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};
//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
int popcount(ll x){return __builtin_popcountll(x);};
int poplow(ll x){return __builtin_ctzll(x);};
int pophigh(ll x){return 63 - __builtin_clzll(x);};
template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};
template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};
ll MULT(ll x,ll y){if(LLONG_MAX/x<=y)return LLONG_MAX;return x*y;}
ll POW2(ll x, ll k){ll ret=1,mul=x;while(k){if(mul==LLONG_MAX)return LLONG_MAX;if(k&1)ret=MULT(ret,mul);mul=MULT(mul,mul);k>>=1;}return ret;}
ll POW(ll x, ll k){ll ret=1;for(int i=0;i<k;i++){if(LLONG_MAX/x<=ret)return LLONG_MAX;ret*=x;}return ret;}
namespace converter{
  int dict[500];
  const string lower="abcdefghijklmnopqrstuvwxyz";
  const string upper="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
  const string digit="0123456789";
  const string digit1="123456789";
  void regi_str(const string &t){
    for(int i=0;i<t.size();i++){
      dict[t[i]]=i;
    }
  }
  void regi_int(const string &t){
    for(int i=0;i<t.size();i++){
      dict[i]=t[i];
    }
  }
  vector<int>to_int(const string &s,const string &t){
    regi_str(t);
    vector<int>ret(s.size());
    for(int i=0;i<s.size();i++){
      ret[i]=dict[s[i]];
    }
    return ret;
  }
  vector<int>to_int(const string &s){
    auto t=s;
    sort(t.begin(),t.end());
    t.erase(unique(t.begin(),t.end()),t.end());
    return to_int(s,t);
  }
  
  vector<vector<int>>to_int(const vector<string>&s,const string &t){
    regi_str(t);
    vector<vector<int>>ret(s.size(),vector<int>(s[0].size()));
    for(int i=0;i<s.size();i++){
      for(int j=0;j<s[0].size();j++){
        ret[i][j]=dict[s[i][j]];
      }
    }
    return ret;
  }
  vector<vector<int>>to_int(const vector<string>&s){
    string t;
    for(int i=0;i<s.size();i++){
      t+=s[i];
    }
    sort(t.begin(),t.end());t.erase(unique(t.begin(),t.end()),t.end());
    return to_int(s,t);
  }
  string to_str(const vector<int>&s,const string &t){
    regi_int(t);
    string ret;
    for(auto z:s)ret+=dict[z];
    return ret;
  }
  vector<string> to_str(const vector<vector<int>>&s,const string &t){
    regi_int(t);
    vector<string>ret(s.size());
    for(int i=0;i<s.size();i++){
      for(auto z:s[i])ret[i]+=dict[z];
    }
    return ret;
  }
}
template< typename T = int >
struct edge {
  int to;
  T cost;
  int id;
  edge():to(-1),id(-1){};
  edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}
  operator int() const { return to; }
};

template<typename T>
using Graph = vector<vector<edge<T>>>;
template<typename T>
Graph<T>revgraph(const Graph<T> &g){
  Graph<T>ret(g.size());
  for(int i=0;i<g.size();i++){
    for(auto e:g[i]){
      int to = e.to;
      e.to = i;
      ret[to].push_back(e);
    }
  }
  return ret;
}
template<typename T>
Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){
  Graph<T> ret(n);
  for(int es = 0; es < m; es++){
    int u,v;
    T w=1;
    cin>>u>>v;u-=indexed,v-=indexed;
    if(weighted)cin>>w;
    ret[u].emplace_back(v,w,es);
    if(!directed)ret[v].emplace_back(u,w,es);
  }
  return ret;
}
template<typename T>
Graph<T> readParent(int n,int indexed=1,bool directed=true){
  Graph<T>ret(n);
  for(int i=1;i<n;i++){
    int p;cin>>p;
    p-=indexed;
    ret[p].emplace_back(i);
    if(!directed)ret[i].emplace_back(p);
  }
  return ret;
}
template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) += rhs;
  }
  friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) -= rhs;
  }
  friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) *= rhs;
  }
  friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) /= rhs;
  }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

template< typename T >
struct Combination {
  vector< T > _fact, _rfact, _inv;

  Combination(ll sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {
    _fact[0] = _rfact[sz] = _inv[0] = 1;
    for(ll i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;
    _rfact[sz] /= _fact[sz];
    for(ll i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);
    for(ll i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];
  }

  inline T fact(ll k) const { return _fact[k]; }

  inline T rfact(ll k) const { return _rfact[k]; }

  inline T inv(ll k) const { return _inv[k]; }

  T P(ll n, ll r) const {
    if(r < 0 || n < r) return 0;
    return fact(n) * rfact(n - r);
  }

  T C(ll p, ll q) const {
    if(q < 0 || p < q) return 0;
    return fact(p) * rfact(q) * rfact(p - q);
  }
  
  T RC(ll p, ll q) const {
    if(q < 0 || p < q) return 0;
    return rfact(p) * fact(q) * fact(p - q);
  }

  T H(ll n, ll r) const {
    if(n < 0 || r < 0) return (0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
  //+1がm個、-1がn個で prefix sumが常にk以上
  T catalan(ll m,ll n,ll k){
    if(n>m-k)return 0;
    else return C(n+m,m)-C(n+m,n+k-1);
  }
};
using modint = ModInt< MOD9 >;modint mpow(ll n, ll x){return modint(n).pow(x);}modint mpow(modint n, ll x){return n.pow(x);}
//using modint=ld;modint mpow(ll n, ll x){return pow(n,x);}modint mpow(modint n, ll x){return pow(n,x);}
using Comb=Combination<modint>;

template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
  static vector< Mint > dw, idw;
  static int max_base;
  static Mint root;
  NumberTheoreticTransformFriendlyModInt() = default;
  static void init() {
    const unsigned mod = Mint::get_mod();
    assert(mod >= 3 && mod % 2 == 1);
    auto tmp = mod - 1;
    max_base = 0;
    while(tmp % 2 == 0) tmp >>= 1, max_base++;
    root = 2;
    while(root.pow((mod - 1) >> 1) == 1) root += 1;
    assert(root.pow(mod - 1) == 1);
    dw.resize(max_base);
    idw.resize(max_base);
    for(int i = 0; i < max_base; i++) {
      dw[i] = -root.pow((mod - 1) >> (i + 2));
      idw[i] = Mint(1) / dw[i];
    }
  }
 
  static void ntt(vector< Mint > &a) {
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    assert(__builtin_ctz(n) <= max_base);
    for(int m = n; m >>= 1;) {
      Mint w = 1;
      for(int s = 0, k = 0; s < n; s += 2 * m) {
        for(int i = s, j = s + m; i < s + m; ++i, ++j) {
          auto x = a[i], y = a[j] * w;
          a[i] = x + y, a[j] = x - y;
        }
        w *= dw[__builtin_ctz(++k)];
      }
    }
  }
 
  static void intt(vector< Mint > &a, bool f = true) {
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    assert(__builtin_ctz(n) <= max_base);
    for(int m = 1; m < n; m *= 2) {
      Mint w = 1;
      for(int s = 0, k = 0; s < n; s += 2 * m) {
        for(int i = s, j = s + m; i < s + m; ++i, ++j) {
          auto x = a[i], y = a[j];
          a[i] = x + y, a[j] = (x - y) * w;
        }
        w *= idw[__builtin_ctz(++k)];
      }
    }
    if(f) {
      Mint inv_sz = Mint(1) / n;
      for(int i = 0; i < n; i++) a[i] *= inv_sz;
    }
  }
 
  static vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
    int need = a.size() + b.size() - 1;
    int nbase = 1;
    while((1 << nbase) < need) nbase++;
    int sz = 1 << nbase;
    a.resize(sz, 0);
    b.resize(sz, 0);
    ntt(a);
    ntt(b);
    Mint inv_sz = Mint(1) / sz;
    for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
    intt(a, false);
    a.resize(need);
    return a;
  }
};
template< typename Mint >
vector< Mint >  NumberTheoreticTransformFriendlyModInt<Mint>::dw = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::idw = vector< Mint >();
template< typename Mint >
int NumberTheoreticTransformFriendlyModInt< Mint >::max_base = 0;
template< typename Mint >
Mint NumberTheoreticTransformFriendlyModInt< Mint >::root = 2;
 
 
//ret[i-j]=x[i]*y[j]
template<typename Conv, typename T>
vector<T>multiply_minus(vector<T>x,vector<T>y){
  reverse(y.begin(),y.end());
  auto tmp = Conv::multiply(x,y);
  vector<T>ret(x.size());
  for(int i = 0; i < x.size(); i++){
    ret[i] = tmp[y.size() - 1 + i];
  }
  return ret;
}

int main(){
  cin.tie(nullptr);
  ios_base::sync_with_stdio(false);
  ll res=0,buf=0;
  bool judge = true;
  NumberTheoreticTransformFriendlyModInt<modint>::init();
  ll n,m;cin>>n>>m;
  Comb comb(2000005);
  modint ret=1;
  // rep(k,0,m+1){
  //   // rep(peak,1,k+1){
  //   //   ll diff=peak*2-1;
  //   //   modint num=comb.C(k,peak)*comb.C(k,peak-1)*comb.inv(k);
  //   //   ret+=comb.C(2*k+n-diff,n-diff)*num;
  //   // }
  //   rep(peak,1,k+30){
  //     ll diff=peak*2-1;
  //     //modint num=comb.C(k,peak)*comb.C(k,peak-1)*comb.inv(k);
  //     modint num=comb.fact(k)*comb.rfact(k-peak)*comb.rfact(peak)*comb.fact(k)*comb.rfact(peak-1)*comb.rfact(k-peak+1)*comb.inv(k);
  //     //ret+=comb.C(2*k+n-peak*2+1,n-peak*2+1)*num;
  //     if(n-peak*2+1<0)continue;
  //     //ret+=comb.fact(2*(k-peak)+n+1)*comb.rfact(n-peak*2+1)*comb.rfact(2*k)*num;
  //     //OUT(comb.fact(2*(k-peak)+n+1)*comb.rfact(n-peak*2+1)*comb.rfact(2*k),comb.C(2*k+n-peak*2+1,n-peak*2+1));
  //   }
  // }
  vector<modint>fk(m+1);
  rep(k,0,m+1)fk[k]=comb.fact(k)*comb.fact(k)*comb.inv(k)*comb.rfact(2*k);
  vector<modint>fp(m+1);
  rep(p,0,m+1)if(n-p*2+1>=0)fp[m-p]=comb.rfact(p)*comb.rfact(p-1)*comb.rfact(n-p*2+1);
  auto fkp=NumberTheoreticTransformFriendlyModInt<modint>::multiply(fk,fp);
  rep(kp,0,m+1){
    ret+=fkp[kp+m]*comb.rfact(kp)*comb.rfact(kp+1)*comb.fact(2*kp+n+1);
  }
  cout<<ret<<endl;
  return 0;
}

这程序好像有点Bug,我给组数据试试?

详细

Test #1:

score: 100
Accepted
time: 20ms
memory: 26524kb

input:

2 2

output:

9

result:

ok 1 number(s): "9"

Test #2:

score: 0
Accepted
time: 112ms
memory: 40512kb

input:

500000 500000

output:

984531374

result:

ok 1 number(s): "984531374"

Test #3:

score: 0
Accepted
time: 21ms
memory: 26488kb

input:

500000 1

output:

219705876

result:

ok 1 number(s): "219705876"

Test #4:

score: 0
Accepted
time: 97ms
memory: 40604kb

input:

1 500000

output:

500001

result:

ok 1 number(s): "500001"

Test #5:

score: 0
Accepted
time: 100ms
memory: 38892kb

input:

500000 353535

output:

33730077

result:

ok 1 number(s): "33730077"

Test #6:

score: 0
Accepted
time: 102ms
memory: 40620kb

input:

353535 500000

output:

182445298

result:

ok 1 number(s): "182445298"

Test #7:

score: 0
Accepted
time: 97ms
memory: 40600kb

input:

499999 499999

output:

933220940

result:

ok 1 number(s): "933220940"

Test #8:

score: 0
Accepted
time: 95ms
memory: 40512kb

input:

499999 499998

output:

899786345

result:

ok 1 number(s): "899786345"

Test #9:

score: 0
Accepted
time: 91ms
memory: 39376kb

input:

377773 400009

output:

206748715

result:

ok 1 number(s): "206748715"

Test #10:

score: 0
Accepted
time: 32ms
memory: 29728kb

input:

499999 100001

output:

482775773

result:

ok 1 number(s): "482775773"

Test #11:

score: 0
Accepted
time: 100ms
memory: 40436kb

input:

444445 488884

output:

70939759

result:

ok 1 number(s): "70939759"

Test #12:

score: 0
Accepted
time: 99ms
memory: 39860kb

input:

488885 444449

output:

591315327

result:

ok 1 number(s): "591315327"

Test #13:

score: 0
Accepted
time: 17ms
memory: 26448kb

input:

500000 111

output:

313439156

result:

ok 1 number(s): "313439156"

Test #14:

score: 0
Accepted
time: 100ms
memory: 39904kb

input:

333333 444444

output:

403492103

result:

ok 1 number(s): "403492103"

Test #15:

score: 0
Accepted
time: 109ms
memory: 38752kb

input:

499994 343433

output:

334451699

result:

ok 1 number(s): "334451699"

Test #16:

score: 0
Accepted
time: 101ms
memory: 39540kb

input:

477774 411113

output:

63883341

result:

ok 1 number(s): "63883341"

Test #17:

score: 0
Accepted
time: 101ms
memory: 39716kb

input:

123456 432109

output:

238795570

result:

ok 1 number(s): "238795570"

Test #18:

score: 0
Accepted
time: 104ms
memory: 40236kb

input:

131331 467777

output:

834790039

result:

ok 1 number(s): "834790039"

Test #19:

score: 0
Accepted
time: 18ms
memory: 26500kb

input:

500000 2

output:

304727284

result:

ok 1 number(s): "304727284"

Test #20:

score: 0
Accepted
time: 21ms
memory: 26520kb

input:

1111 111

output:

98321603

result:

ok 1 number(s): "98321603"

Test #21:

score: 0
Accepted
time: 99ms
memory: 40520kb

input:

416084 493105

output:

916827025

result:

ok 1 number(s): "916827025"

Test #22:

score: 0
Accepted
time: 51ms
memory: 32192kb

input:

53888 138663

output:

57263952

result:

ok 1 number(s): "57263952"

Test #23:

score: 0
Accepted
time: 101ms
memory: 39124kb

input:

219161 382743

output:

304889787

result:

ok 1 number(s): "304889787"

Test #24:

score: 0
Accepted
time: 105ms
memory: 38444kb

input:

181392 318090

output:

12528742

result:

ok 1 number(s): "12528742"

Test #25:

score: 0
Accepted
time: 103ms
memory: 39696kb

input:

135930 422947

output:

554153000

result:

ok 1 number(s): "554153000"

Test #26:

score: 0
Accepted
time: 58ms
memory: 33056kb

input:

280507 210276

output:

812816587

result:

ok 1 number(s): "812816587"

Test #27:

score: 0
Accepted
time: 97ms
memory: 39572kb

input:

253119 420465

output:

124024302

result:

ok 1 number(s): "124024302"

Test #28:

score: 0
Accepted
time: 37ms
memory: 29660kb

input:

446636 97448

output:

150388382

result:

ok 1 number(s): "150388382"

Test #29:

score: 0
Accepted
time: 40ms
memory: 29976kb

input:

284890 126665

output:

786559507

result:

ok 1 number(s): "786559507"

Test #30:

score: 0
Accepted
time: 18ms
memory: 27608kb

input:

186708 28279

output:

607509026

result:

ok 1 number(s): "607509026"

Extra Test:

score: 0
Extra Test Passed