QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#225936 | #7609. Colonization | hos_lyric | AC ✓ | 18ms | 4348kb | C++14 | 23.5kb | 2023-10-25 12:34:15 | 2023-10-25 12:34:15 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
#define ModInt Mint
////////////////////////////////////////////////////////////////////////////////
// Barrett
struct ModInt {
static unsigned M;
static unsigned long long NEG_INV_M;
static void setM(unsigned m) { M = m; NEG_INV_M = -1ULL / M; }
unsigned x;
ModInt() : x(0U) {}
ModInt(unsigned x_) : x(x_ % M) {}
ModInt(unsigned long long x_) : x(x_ % M) {}
ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) {
const unsigned long long y = static_cast<unsigned long long>(x) * a.x;
const unsigned long long q = static_cast<unsigned long long>((static_cast<unsigned __int128>(NEG_INV_M) * y) >> 64);
const unsigned long long r = y - M * q;
x = r - M * (r >= M);
return *this;
}
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
unsigned ModInt::M;
unsigned long long ModInt::NEG_INV_M;
// !!!Use ModInt::setM!!!
////////////////////////////////////////////////////////////////////////////////
#undef ModInt
constexpr int LIM_INV = 2010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];
void prepare() {
inv[1] = 1;
for (int i = 2; i < LIM_INV; ++i) {
inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
}
fac[0] = invFac[0] = 1;
for (int i = 1; i < LIM_INV; ++i) {
fac[i] = fac[i - 1] * i;
invFac[i] = invFac[i - 1] * inv[i];
}
}
Mint binom(Int n, Int k) {
if (n < 0) {
if (k >= 0) {
return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
} else if (n - k >= 0) {
return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
} else {
return 0;
}
} else {
if (0 <= k && k <= n) {
assert(n < LIM_INV);
return fac[n] * invFac[k] * invFac[n - k];
} else {
return 0;
}
}
}
////////////////////////////////////////////////////////////////////////////////
// M: prime, G: primitive root, 2^K | M - 1
template <unsigned M_, unsigned G_, int K_> struct Fft {
static_assert(2U <= M_, "Fft: 2 <= M must hold.");
static_assert(M_ < 1U << 30, "Fft: M < 2^30 must hold.");
static_assert(1 <= K_, "Fft: 1 <= K must hold.");
static_assert(K_ < 30, "Fft: K < 30 must hold.");
static_assert(!((M_ - 1U) & ((1U << K_) - 1U)), "Fft: 2^K | M - 1 must hold.");
static constexpr unsigned M = M_;
static constexpr unsigned M2 = 2U * M_;
static constexpr unsigned G = G_;
static constexpr int K = K_;
ModInt<M> FFT_ROOTS[K + 1], INV_FFT_ROOTS[K + 1];
ModInt<M> FFT_RATIOS[K], INV_FFT_RATIOS[K];
Fft() {
const ModInt<M> g(G);
for (int k = 0; k <= K; ++k) {
FFT_ROOTS[k] = g.pow((M - 1U) >> k);
INV_FFT_ROOTS[k] = FFT_ROOTS[k].inv();
}
for (int k = 0; k <= K - 2; ++k) {
FFT_RATIOS[k] = -g.pow(3U * ((M - 1U) >> (k + 2)));
INV_FFT_RATIOS[k] = FFT_RATIOS[k].inv();
}
assert(FFT_ROOTS[1] == M - 1U);
}
// as[rev(i)] <- \sum_j \zeta^(ij) as[j]
void fft(ModInt<M> *as, int n) const {
assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << K);
int m = n;
if (m >>= 1) {
for (int i = 0; i < m; ++i) {
const unsigned x = as[i + m].x; // < M
as[i + m].x = as[i].x + M - x; // < 2 M
as[i].x += x; // < 2 M
}
}
if (m >>= 1) {
ModInt<M> prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + m; ++i) {
const unsigned x = (prod * as[i + m]).x; // < M
as[i + m].x = as[i].x + M - x; // < 3 M
as[i].x += x; // < 3 M
}
prod *= FFT_RATIOS[__builtin_ctz(++h)];
}
}
for (; m; ) {
if (m >>= 1) {
ModInt<M> prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + m; ++i) {
const unsigned x = (prod * as[i + m]).x; // < M
as[i + m].x = as[i].x + M - x; // < 4 M
as[i].x += x; // < 4 M
}
prod *= FFT_RATIOS[__builtin_ctz(++h)];
}
}
if (m >>= 1) {
ModInt<M> prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + m; ++i) {
const unsigned x = (prod * as[i + m]).x; // < M
as[i].x = (as[i].x >= M2) ? (as[i].x - M2) : as[i].x; // < 2 M
as[i + m].x = as[i].x + M - x; // < 3 M
as[i].x += x; // < 3 M
}
prod *= FFT_RATIOS[__builtin_ctz(++h)];
}
}
}
for (int i = 0; i < n; ++i) {
as[i].x = (as[i].x >= M2) ? (as[i].x - M2) : as[i].x; // < 2 M
as[i].x = (as[i].x >= M) ? (as[i].x - M) : as[i].x; // < M
}
}
// as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]
void invFft(ModInt<M> *as, int n) const {
assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << K);
int m = 1;
if (m < n >> 1) {
ModInt<M> prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + m; ++i) {
const unsigned long long y = as[i].x + M - as[i + m].x; // < 2 M
as[i].x += as[i + m].x; // < 2 M
as[i + m].x = (prod.x * y) % M; // < M
}
prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
}
m <<= 1;
}
for (; m < n >> 1; m <<= 1) {
ModInt<M> prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + (m >> 1); ++i) {
const unsigned long long y = as[i].x + M2 - as[i + m].x; // < 4 M
as[i].x += as[i + m].x; // < 4 M
as[i].x = (as[i].x >= M2) ? (as[i].x - M2) : as[i].x; // < 2 M
as[i + m].x = (prod.x * y) % M; // < M
}
for (int i = i0 + (m >> 1); i < i0 + m; ++i) {
const unsigned long long y = as[i].x + M - as[i + m].x; // < 2 M
as[i].x += as[i + m].x; // < 2 M
as[i + m].x = (prod.x * y) % M; // < M
}
prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
}
}
if (m < n) {
for (int i = 0; i < m; ++i) {
const unsigned y = as[i].x + M2 - as[i + m].x; // < 4 M
as[i].x += as[i + m].x; // < 4 M
as[i + m].x = y; // < 4 M
}
}
const ModInt<M> invN = ModInt<M>(n).inv();
for (int i = 0; i < n; ++i) {
as[i] *= invN;
}
}
void fft(vector<ModInt<M>> &as) const {
fft(as.data(), as.size());
}
void invFft(vector<ModInt<M>> &as) const {
invFft(as.data(), as.size());
}
vector<ModInt<M>> convolve(vector<ModInt<M>> as, vector<ModInt<M>> bs) const {
if (as.empty() || bs.empty()) return {};
const int len = as.size() + bs.size() - 1;
int n = 1;
for (; n < len; n <<= 1) {}
as.resize(n); fft(as);
bs.resize(n); fft(bs);
for (int i = 0; i < n; ++i) as[i] *= bs[i];
invFft(as);
as.resize(len);
return as;
}
vector<ModInt<M>> square(vector<ModInt<M>> as) const {
if (as.empty()) return {};
const int len = as.size() + as.size() - 1;
int n = 1;
for (; n < len; n <<= 1) {}
as.resize(n); fft(as);
for (int i = 0; i < n; ++i) as[i] *= as[i];
invFft(as);
as.resize(len);
return as;
}
};
// M0 M1 M2 = 789204840662082423367925761 (> 7.892 * 10^26, > 2^89)
// M0 M3 M4 M5 M6 = 797766583174034668024539679147517452591562753 (> 7.977 * 10^44, > 2^149)
const Fft<998244353U, 3U, 23> FFT0;
const Fft<897581057U, 3U, 23> FFT1;
const Fft<880803841U, 26U, 23> FFT2;
const Fft<985661441U, 3U, 22> FFT3;
const Fft<943718401U, 7U, 22> FFT4;
const Fft<935329793U, 3U, 22> FFT5;
const Fft<918552577U, 5U, 22> FFT6;
// T = unsigned, unsigned long long, ModInt<M>
template <class T, unsigned M0, unsigned M1, unsigned M2>
T garner(ModInt<M0> a0, ModInt<M1> a1, ModInt<M2> a2) {
static const ModInt<M1> INV_M0_M1 = ModInt<M1>(M0).inv();
static const ModInt<M2> INV_M0M1_M2 = (ModInt<M2>(M0) * M1).inv();
const ModInt<M1> b1 = INV_M0_M1 * (a1 - a0.x);
const ModInt<M2> b2 = INV_M0M1_M2 * (a2 - (ModInt<M2>(b1.x) * M0 + a0.x));
return (T(b2.x) * M1 + b1.x) * M0 + a0.x;
}
template <class T, unsigned M0, unsigned M1, unsigned M2, unsigned M3, unsigned M4>
T garner(ModInt<M0> a0, ModInt<M1> a1, ModInt<M2> a2, ModInt<M3> a3, ModInt<M4> a4) {
static const ModInt<M1> INV_M0_M1 = ModInt<M1>(M0).inv();
static const ModInt<M2> INV_M0M1_M2 = (ModInt<M2>(M0) * M1).inv();
static const ModInt<M3> INV_M0M1M2_M3 = (ModInt<M3>(M0) * M1 * M2).inv();
static const ModInt<M4> INV_M0M1M2M3_M4 = (ModInt<M4>(M0) * M1 * M2 * M3).inv();
const ModInt<M1> b1 = INV_M0_M1 * (a1 - a0.x);
const ModInt<M2> b2 = INV_M0M1_M2 * (a2 - (ModInt<M2>(b1.x) * M0 + a0.x));
const ModInt<M3> b3 = INV_M0M1M2_M3 * (a3 - ((ModInt<M3>(b2.x) * M1 + b1.x) * M0 + a0.x));
const ModInt<M4> b4 = INV_M0M1M2M3_M4 * (a4 - (((ModInt<M4>(b3.x) * M2 + b2.x) * M1 + b1.x) * M0 + a0.x));
return (((T(b4.x) * M3 + b3.x) * M2 + b2.x) * M1 + b1.x) * M0 + a0.x;
}
template <unsigned M> vector<ModInt<M>> convolve(const vector<ModInt<M>> &as, const vector<ModInt<M>> &bs) {
static constexpr unsigned M0 = decltype(FFT0)::M;
static constexpr unsigned M1 = decltype(FFT1)::M;
static constexpr unsigned M2 = decltype(FFT2)::M;
if (as.empty() || bs.empty()) return {};
const int asLen = as.size(), bsLen = bs.size();
vector<ModInt<M0>> as0(asLen), bs0(bsLen);
for (int i = 0; i < asLen; ++i) as0[i] = as[i].x;
for (int i = 0; i < bsLen; ++i) bs0[i] = bs[i].x;
const vector<ModInt<M0>> cs0 = FFT0.convolve(as0, bs0);
vector<ModInt<M1>> as1(asLen), bs1(bsLen);
for (int i = 0; i < asLen; ++i) as1[i] = as[i].x;
for (int i = 0; i < bsLen; ++i) bs1[i] = bs[i].x;
const vector<ModInt<M1>> cs1 = FFT1.convolve(as1, bs1);
vector<ModInt<M2>> as2(asLen), bs2(bsLen);
for (int i = 0; i < asLen; ++i) as2[i] = as[i].x;
for (int i = 0; i < bsLen; ++i) bs2[i] = bs[i].x;
const vector<ModInt<M2>> cs2 = FFT2.convolve(as2, bs2);
vector<ModInt<M>> cs(asLen + bsLen - 1);
for (int i = 0; i < asLen + bsLen - 1; ++i) {
cs[i] = garner<ModInt<M>>(cs0[i], cs1[i], cs2[i]);
}
return cs;
}
template <unsigned M> vector<ModInt<M>> square(const vector<ModInt<M>> &as) {
static constexpr unsigned M0 = decltype(FFT0)::M;
static constexpr unsigned M1 = decltype(FFT1)::M;
static constexpr unsigned M2 = decltype(FFT2)::M;
if (as.empty()) return {};
const int asLen = as.size();
vector<ModInt<M0>> as0(asLen);
for (int i = 0; i < asLen; ++i) as0[i] = as[i].x;
const vector<ModInt<M0>> cs0 = FFT0.square(as0);
vector<ModInt<M1>> as1(asLen);
for (int i = 0; i < asLen; ++i) as1[i] = as[i].x;
const vector<ModInt<M1>> cs1 = FFT1.square(as1);
vector<ModInt<M2>> as2(asLen);
for (int i = 0; i < asLen; ++i) as2[i] = as[i].x;
const vector<ModInt<M2>> cs2 = FFT2.square(as2);
vector<ModInt<M>> cs(asLen + asLen - 1);
for (int i = 0; i < asLen + asLen - 1; ++i) {
cs[i] = garner<ModInt<M>>(cs0[i], cs1[i], cs2[i]);
}
return cs;
}
////////////////////////////////////////////////////////////////////////////////
vector<Mint> convolve(const vector<Mint> &as, const vector<Mint> &bs) {
static constexpr unsigned M0 = decltype(FFT0)::M;
static constexpr unsigned M1 = decltype(FFT1)::M;
static constexpr unsigned M2 = decltype(FFT2)::M;
if (as.empty() || bs.empty()) return {};
const int asLen = as.size(), bsLen = bs.size();
vector<ModInt<M0>> as0(asLen), bs0(bsLen);
for (int i = 0; i < asLen; ++i) as0[i] = as[i].x;
for (int i = 0; i < bsLen; ++i) bs0[i] = bs[i].x;
const vector<ModInt<M0>> cs0 = FFT0.convolve(as0, bs0);
vector<ModInt<M1>> as1(asLen), bs1(bsLen);
for (int i = 0; i < asLen; ++i) as1[i] = as[i].x;
for (int i = 0; i < bsLen; ++i) bs1[i] = bs[i].x;
const vector<ModInt<M1>> cs1 = FFT1.convolve(as1, bs1);
vector<ModInt<M2>> as2(asLen), bs2(bsLen);
for (int i = 0; i < asLen; ++i) as2[i] = as[i].x;
for (int i = 0; i < bsLen; ++i) bs2[i] = bs[i].x;
const vector<ModInt<M2>> cs2 = FFT2.convolve(as2, bs2);
vector<Mint> cs(asLen + bsLen - 1);
for (int i = 0; i < asLen + bsLen - 1; ++i) {
cs[i] = garner<Mint>(cs0[i], cs1[i], cs2[i]);
}
return cs;
}
vector<Mint> square(const vector<Mint> &as) {
static constexpr unsigned M0 = decltype(FFT0)::M;
static constexpr unsigned M1 = decltype(FFT1)::M;
static constexpr unsigned M2 = decltype(FFT2)::M;
if (as.empty()) return {};
const int asLen = as.size();
vector<ModInt<M0>> as0(asLen);
for (int i = 0; i < asLen; ++i) as0[i] = as[i].x;
const vector<ModInt<M0>> cs0 = FFT0.square(as0);
vector<ModInt<M1>> as1(asLen);
for (int i = 0; i < asLen; ++i) as1[i] = as[i].x;
const vector<ModInt<M1>> cs1 = FFT1.square(as1);
vector<ModInt<M2>> as2(asLen);
for (int i = 0; i < asLen; ++i) as2[i] = as[i].x;
const vector<ModInt<M2>> cs2 = FFT2.square(as2);
vector<Mint> cs(asLen + asLen - 1);
for (int i = 0; i < asLen + asLen - 1; ++i) {
cs[i] = garner<Mint>(cs0[i], cs1[i], cs2[i]);
}
return cs;
}
vector<Mint> polyInv(const vector<Mint> &as, int n) {
assert(!as.empty()); assert(as[0]);
const int asLen = as.size();
vector<Mint> bs{as[0].inv()};
for (int m = 1; m < n; m <<= 1) {
const vector<Mint> as0(as.begin(), as.begin() + min(m << 1, asLen));
const auto cs = convolve(as0, square(bs));
bs.resize(m << 1, 0);
for (int i = m; i < m << 1 && i < (int)cs.size(); ++i) bs[i] -= cs[i];
}
return bs;
}
vector<Mint> polyLog(const vector<Mint> &as, int n) {
assert(!as.empty()); assert(as[0] == 1);
const int asLen = as.size();
vector<Mint> bs = as;
for (int i = 0; i < asLen; ++i) bs[i] *= i;
bs = convolve(bs, polyInv(as, n));
bs.resize(n);
for (int i = 0; i < n; ++i) bs[i] *= inv[i];
return bs;
}
// O(|as| + n (log n)^2)
vector<Mint> polyExp(vector<Mint> as, int n) {
assert(!as.empty()); assert(!as[0]);
const int asLen = as.size();
for (int i = 0; i < asLen; ++i) as[i] *= i;
vector<Mint> bs(n, 0);
bs[0] = 1;
for (int i = 1; i < n; ++i) {
const int w = i & -i;
const vector<Mint> as0(as.begin(), as.begin() + min(w << 1, asLen));
const vector<Mint> bs0(bs.begin() + (i - w), bs.begin() + i);
const auto prod = convolve(as0, bs0);
for (int j = i; j < i + w && j < n && j - (i - w) < (int)prod.size(); ++j) bs[j] += prod[j - (i - w)];
bs[i] *= inv[i];
}
return bs;
}
vector<Mint> polyPow1(const vector<Mint> &as, Mint k, int n) {
assert(!as.empty()); assert(as[0] == 1);
vector<Mint> bs = polyLog(as, n);
for (int i = 0; i < n; ++i) bs[i] *= k;
return polyExp(bs, n);
}
// [x^n] a/b
Mint polyDivAt(vector<Mint> as, vector<Mint> bs, long long n) {
const int len = max(as.size(), bs.size());
as.resize(len, 0);
bs.resize(len, 0);
assert(len > 0); assert(bs[0]);
for (; n >= len; n >>= 1) {
auto cs = bs;
for (int i = 1; i < len; i += 2) cs[i] = -cs[i];
as = convolve(as, cs);
bs = convolve(bs, cs);
as.resize(len << 1);
for (int i = 0; i < len; ++i) as[i] = as[2 * i + (n & 1)];
for (int i = 0; i < len; ++i) bs[i] = bs[2 * i];
as.resize(len);
bs.resize(len);
}
bs = polyInv(bs, n + 1);
Mint ret = 0;
for (int i = 0; i <= n; ++i) ret += as[i] * bs[n - i];
return ret;
}
Mint linearRecurrenceAt(const vector<Mint> &as, const vector<Mint> &cs, long long k) {
assert(!cs.empty()); assert(cs[0]);
const int d = (int)cs.size() - 1;
assert((int)as.size() >= d);
const vector<Mint> as0(as.begin(), as.begin() + d);
auto bs = convolve(as0, cs);
bs.resize(d);
return polyDivAt(bs, cs, k);
}
int N, P;
vector<Mint> MSet(const vector<Mint> &as) {
assert(!as[0]);
vector<Mint> bs(N + 1, 0);
for (int i = 1; i <= N; ++i) for (int j = 1; i * j <= N; ++j) {
bs[i * j] += inv[i] * as[j];
}
return polyExp(bs, N + 1);
}
int main() {
// for(int k=0;k<10;++k)cerr<<k<<": "<<(1+3*((1<<k)-1))<<endl;
for (; ~scanf("%d%d", &N, &P); ) {
Mint::setM(P);
prepare();
vector<Mint> ans(N + 1, 0);
// x MSet("subtree with rooted DP k"), MSet=1, MSet=2
vector<Mint> tree(N + 1, 0), tree0(N + 1, 0), tree1(N + 1, 0), tree2(N + 1, 0);
tree[1] += 1;
// x MSet1(rooted DP is k)
for (int k = 0; 1 + 3 * ((1 << k) - 1) <= N; ++k) {
/*
cerr<<COLOR("33")<<"k = "<<k<<COLOR()<<endl;
cerr<<"tree = "<<tree<<endl;
cerr<<"tree0 = "<<tree0<<endl;
cerr<<"tree1 = "<<tree1<<endl;
cerr<<"tree2 = "<<tree2<<endl;
*/
vector<Mint> multi(N + 1, 0);
for (int i = 0; i <= N; ++i) {
multi[i] = (tree[i] - tree0[i] - tree1[i]);
}
vector<Mint> chain;
{
auto tmp = tree;
for (int i = 0; i <= N; ++i) tmp[i] = -tmp[i];
tmp[0] += 1;
chain = polyInv(tmp, N + 1);
}
// attach >= 2 at end
auto chain1 = convolve(chain, multi); chain1.resize(N + 1);
auto chain2 = convolve(chain1, multi); chain2.resize(N + 1);
vector<Mint> chain1chain1(N + 1, 0);
for (int i = 1; 2 * i <= N; ++i) chain1chain1[2 * i] = chain1[i];
vector<Mint> good(N + 1, 0);
// >= 3 "subtrees"
for (int i = 0; i <= N; ++i) {
good[i] += (tree[i] - tree0[i] - tree1[i] - tree2[i]);
}
// >= 2 "subtrees", chain*, >= 2 "subtrees"
{
auto palinEven = chain1chain1;
auto palinOdd = convolve(chain1chain1, tree); palinOdd.resize(N + 1);
for (int i = 0; i <= N; ++i) {
good[i] += (chain2[i] + palinEven[i] + palinOdd[i]) / 2;
}
}
// cerr<<"good = "<<good<<endl;
ans[k + 1] += good[N];
tree0 = tree;
tree1 = convolve(tree, chain1); tree1.resize(N + 1);
{
auto tmp = square(chain1); tmp.resize(N + 1);
for (int i = 0; i <= N; ++i) {
tmp[i] = (tmp[i] + chain1chain1[i]) / 2;
}
tree2 = convolve(tree, tmp); tree2.resize(N + 1);
}
tree = convolve(tree, MSet(chain1)); tree.resize(N + 1);
}
for (int k = 1; k <= N; ++k) {
if (k > 1) printf(" ");
printf("%u", ans[k].x);
}
puts("");
}
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3960kb
input:
3 100000007
output:
1 0 0
result:
ok 3 number(s): "1 0 0"
Test #2:
score: 0
Accepted
time: 1ms
memory: 4228kb
input:
6 300000007
output:
1 5 0 0 0 0
result:
ok 6 numbers
Test #3:
score: 0
Accepted
time: 1ms
memory: 3968kb
input:
10 1000000007
output:
1 104 1 0 0 0 0 0 0 0
result:
ok 10 numbers
Test #4:
score: 0
Accepted
time: 0ms
memory: 4260kb
input:
2 739878731
output:
1 0
result:
ok 2 number(s): "1 0"
Test #5:
score: 0
Accepted
time: 1ms
memory: 3968kb
input:
3 122646779
output:
1 0 0
result:
ok 3 number(s): "1 0 0"
Test #6:
score: 0
Accepted
time: 0ms
memory: 4232kb
input:
4 457287433
output:
1 1 0 0
result:
ok 4 number(s): "1 1 0 0"
Test #7:
score: 0
Accepted
time: 0ms
memory: 4264kb
input:
5 1000000007
output:
1 2 0 0 0
result:
ok 5 number(s): "1 2 0 0 0"
Test #8:
score: 0
Accepted
time: 0ms
memory: 4268kb
input:
6 1000000007
output:
1 5 0 0 0 0
result:
ok 6 numbers
Test #9:
score: 0
Accepted
time: 1ms
memory: 3960kb
input:
7 763596907
output:
1 10 0 0 0 0 0
result:
ok 7 numbers
Test #10:
score: 0
Accepted
time: 0ms
memory: 4256kb
input:
8 1000000007
output:
1 22 0 0 0 0 0 0
result:
ok 8 numbers
Test #11:
score: 0
Accepted
time: 1ms
memory: 3968kb
input:
9 729507523
output:
1 46 0 0 0 0 0 0 0
result:
ok 9 numbers
Test #12:
score: 0
Accepted
time: 1ms
memory: 3964kb
input:
11 488473873
output:
1 230 4 0 0 0 0 0 0 0 0
result:
ok 11 numbers
Test #13:
score: 0
Accepted
time: 1ms
memory: 3988kb
input:
12 100000007
output:
1 531 19 0 0 0 0 0 0 0 0 0
result:
ok 12 numbers
Test #14:
score: 0
Accepted
time: 1ms
memory: 3972kb
input:
13 1000000007
output:
1 1223 77 0 0 0 0 0 0 0 0 0 0
result:
ok 13 numbers
Test #15:
score: 0
Accepted
time: 1ms
memory: 4232kb
input:
14 1000000007
output:
1 2871 287 0 0 0 0 0 0 0 0 0 0 0
result:
ok 14 numbers
Test #16:
score: 0
Accepted
time: 1ms
memory: 4272kb
input:
15 290707159
output:
1 6738 1002 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 15 numbers
Test #17:
score: 0
Accepted
time: 1ms
memory: 4264kb
input:
16 200746561
output:
1 15954 3365 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 16 numbers
Test #18:
score: 0
Accepted
time: 1ms
memory: 3976kb
input:
17 920695687
output:
1 37775 10853 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 17 numbers
Test #19:
score: 0
Accepted
time: 1ms
memory: 4044kb
input:
18 100000007
output:
1 89778 34088 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 18 numbers
Test #20:
score: 0
Accepted
time: 1ms
memory: 4264kb
input:
19 1000000007
output:
1 213380 104574 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 19 numbers
Test #21:
score: 0
Accepted
time: 1ms
memory: 4048kb
input:
20 1000000007
output:
1 507948 315116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 20 numbers
Test #22:
score: 0
Accepted
time: 1ms
memory: 4036kb
input:
21 1000000007
output:
1 1209183 935321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 21 numbers
Test #23:
score: 0
Accepted
time: 1ms
memory: 3980kb
input:
22 293085943
output:
1 2880381 2743373 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 22 numbers
Test #24:
score: 0
Accepted
time: 1ms
memory: 4272kb
input:
23 1000000007
output:
1 6861350 7966717 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 23 numbers
Test #25:
score: 0
Accepted
time: 1ms
memory: 3924kb
input:
24 1000000007
output:
1 16348886 22950963 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 24 numbers
Test #26:
score: 0
Accepted
time: 1ms
memory: 4048kb
input:
25 100000007
output:
1 38955353 65681223 313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 25 numbers
Test #27:
score: 0
Accepted
time: 1ms
memory: 3976kb
input:
31 534112939
output:
1 192268405 73638402 6451797 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 31 numbers
Test #28:
score: 0
Accepted
time: 1ms
memory: 4012kb
input:
32 1000000007
output:
1 5929365 938116336 28363756 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 32 numbers
Test #29:
score: 0
Accepted
time: 1ms
memory: 3968kb
input:
33 100000007
output:
1 28626901 79818017 20396526 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 33 numbers
Test #30:
score: 0
Accepted
time: 1ms
memory: 3996kb
input:
45 449530979
output:
1 171137267 404676218 400336656 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 45 numbers
Test #31:
score: 0
Accepted
time: 1ms
memory: 4036kb
input:
46 1000000007
output:
1 199174750 533156646 230095585 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 46 numbers
Test #32:
score: 0
Accepted
time: 2ms
memory: 3976kb
input:
63 901518881
output:
1 463582236 485174050 287704421 146635752 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 63 numbers
Test #33:
score: 0
Accepted
time: 2ms
memory: 3976kb
input:
64 137267147
output:
1 35160421 46570987 16058722 84291291 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 64 numbers
Test #34:
score: 0
Accepted
time: 2ms
memory: 4272kb
input:
65 285342521
output:
1 274680000 185520281 272194478 194410283 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 65 numbers
Test #35:
score: 0
Accepted
time: 3ms
memory: 4288kb
input:
93 927588749
output:
1 739012354 414231470 524375705 491769836 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 93 numbers
Test #36:
score: 0
Accepted
time: 3ms
memory: 3984kb
input:
94 1000000007
output:
1 174061321 12227912 673546067 414725694 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 94 numbers
Test #37:
score: 0
Accepted
time: 3ms
memory: 3968kb
input:
127 837565763
output:
1 446351899 736480797 801225275 81764442 837167518 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 127 numbers
Test #38:
score: 0
Accepted
time: 5ms
memory: 4292kb
input:
128 100000007
output:
1 53744379 39517387 95806759 76712174 64599518 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 128 numbers
Test #39:
score: 0
Accepted
time: 5ms
memory: 4292kb
input:
129 100000007
output:
1 54413572 77155852 35776158 8059026 50094475 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 129 numbers
Test #40:
score: 0
Accepted
time: 6ms
memory: 4012kb
input:
189 100000007
output:
1 20631572 98966220 97206167 20535001 98542068 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
result:
ok 189 numbers
Test #41:
score: 0
Accepted
time: 6ms
memory: 4016kb
input:
190 1000000007
output:
1 860182239 85061792 915947137 663567155 838976700 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
result:
ok 190 numbers
Test #42:
score: 0
Accepted
time: 7ms
memory: 4036kb
input:
251 100000007
output:
1 44059658 9262465 26500589 1719804 86005028 93059166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 251 numbers
Test #43:
score: 0
Accepted
time: 5ms
memory: 3992kb
input:
252 438884497
output:
1 350004178 339722925 331392720 339369500 346888489 145616211 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 252 numbers
Test #44:
score: 0
Accepted
time: 3ms
memory: 4052kb
input:
253 603030559
output:
1 271460264 113828285 211485995 140494699 117148110 528164491 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 253 numbers
Test #45:
score: 0
Accepted
time: 6ms
memory: 4016kb
input:
254 348935141
output:
1 43492722 336540922 302203252 295334615 232628368 334090063 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
result:
ok 254 numbers
Test #46:
score: 0
Accepted
time: 7ms
memory: 4016kb
input:
255 1000000007
output:
1 91921129 240703773 860507313 874767125 217480414 312302154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
result:
ok 255 numbers
Test #47:
score: 0
Accepted
time: 7ms
memory: 4324kb
input:
256 1000000007
output:
1 53171383 308195745 292391229 411819088 716198819 576070511 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
result:
ok 256 numbers
Test #48:
score: 0
Accepted
time: 11ms
memory: 4064kb
input:
257 100000007
output:
1 81139239 17341218 77559815 79820516 8464002 98148398 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
result:
ok 257 numbers
Test #49:
score: 0
Accepted
time: 11ms
memory: 4320kb
input:
258 442383839
output:
1 17124647 269217418 150135508 44573661 331788565 178732642 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 258 numbers
Test #50:
score: 0
Accepted
time: 11ms
memory: 4112kb
input:
259 1000000007
output:
1 110221852 366165150 234264934 260805622 864063783 707330112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 259 numbers
Test #51:
score: 0
Accepted
time: 11ms
memory: 4044kb
input:
260 712345379
output:
1 695448021 314265267 409389839 186491237 137959338 602047939 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 260 numbers
Test #52:
score: 0
Accepted
time: 11ms
memory: 4028kb
input:
261 905487833
output:
1 343672449 301480800 74963931 846427040 50121928 66712132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
result:
ok 261 numbers
Test #53:
score: 0
Accepted
time: 13ms
memory: 4044kb
input:
379 785307437
output:
1 104449237 551856852 287086915 700424952 260302548 683038837 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 379 numbers
Test #54:
score: 0
Accepted
time: 14ms
memory: 4020kb
input:
380 1000000007
output:
1 898776986 792687672 458428823 424922724 540625189 703369531 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 380 numbers
Test #55:
score: 0
Accepted
time: 13ms
memory: 4048kb
input:
381 1000000007
output:
1 792757940 914747475 138265905 619378463 243945373 245237150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 381 numbers
Test #56:
score: 0
Accepted
time: 15ms
memory: 4052kb
input:
382 1000000007
output:
1 967586300 862777957 762030482 699420239 261107449 927966095 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 382 numbers
Test #57:
score: 0
Accepted
time: 15ms
memory: 4048kb
input:
383 215369873
output:
1 137773847 215004848 201659396 179799367 6430943 40328459 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 383 numbers
Test #58:
score: 0
Accepted
time: 15ms
memory: 4044kb
input:
384 1000000007
output:
1 507910674 458483513 431720627 483110084 435044603 540855576 369 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 384 numbers
Test #59:
score: 0
Accepted
time: 15ms
memory: 4044kb
input:
385 454793887
output:
1 248403036 291298368 251944296 296123869 371504911 24661638 8879 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 385 numbers
Test #60:
score: 0
Accepted
time: 15ms
memory: 4124kb
input:
386 1000000007
output:
1 265750215 79378345 232928900 483946141 205160466 429741317 202552 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 386 numbers
Test #61:
score: 0
Accepted
time: 15ms
memory: 4084kb
input:
387 227519269
output:
1 10763873 128932761 4923580 111935720 101016988 55107358 4366847 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 387 numbers
Test #62:
score: 0
Accepted
time: 15ms
memory: 4044kb
input:
388 1000000007
output:
1 958804227 524180264 304133528 240757407 115032333 782719263 89834392 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
result:
ok 388 numbers
Test #63:
score: 0
Accepted
time: 13ms
memory: 4112kb
input:
389 100000007
output:
1 1930815 57848302 3602158 77887435 14525348 1062339 70400721 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 389 numbers
Test #64:
score: 0
Accepted
time: 17ms
memory: 4036kb
input:
490 100000007
output:
1 96342386 17439556 23314154 89355902 37007860 13022516 15758638 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
result:
ok 490 numbers
Test #65:
score: 0
Accepted
time: 17ms
memory: 4060kb
input:
491 150073523
output:
1 9711255 122670986 90390709 18503883 27665285 140185636 116277727 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
result:
ok 491 numbers
Test #66:
score: 0
Accepted
time: 13ms
memory: 4008kb
input:
492 100000007
output:
1 53440278 34811222 65887674 39632523 80352836 51887989 53638950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
result:
ok 492 numbers
Test #67:
score: 0
Accepted
time: 18ms
memory: 4060kb
input:
493 1000000007
output:
1 744781325 335559402 899766846 495308909 483295651 260407300 970927089 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 493 numbers
Test #68:
score: 0
Accepted
time: 17ms
memory: 4060kb
input:
494 267940807
output:
1 173520076 91930068 196027436 182150385 254288786 233046355 184330491 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
result:
ok 494 numbers
Test #69:
score: 0
Accepted
time: 17ms
memory: 4064kb
input:
495 103825471
output:
1 103727223 64685514 91375652 39482044 46185280 83105809 50113222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 495 numbers
Test #70:
score: 0
Accepted
time: 17ms
memory: 4072kb
input:
496 849169157
output:
1 344999439 495436786 781457946 404504956 270903993 494266348 209361467 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 496 numbers
Test #71:
score: 0
Accepted
time: 17ms
memory: 4348kb
input:
497 662520673
output:
1 156500838 639965771 190377618 568425495 81997 303944968 210618835 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 497 numbers
Test #72:
score: 0
Accepted
time: 18ms
memory: 4124kb
input:
498 1000000007
output:
1 573703418 935865068 977863365 602392352 835769495 352753836 613593614 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 498 numbers
Test #73:
score: 0
Accepted
time: 17ms
memory: 4328kb
input:
499 197518697
output:
1 183648021 12587187 141992294 103512133 121413153 142956322 51677789 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 499 numbers
Test #74:
score: 0
Accepted
time: 14ms
memory: 4076kb
input:
500 351956881
output:
1 278454371 270002440 87590952 340114688 136937620 87109359 224401059 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 500 numbers
Extra Test:
score: 0
Extra Test Passed