QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#214089#6548. Coursesucup-team087#AC ✓1771ms85608kbC++1412.5kb2023-10-14 17:11:172023-10-14 17:11:17

Judging History

你现在查看的是最新测评结果

  • [2023-10-14 17:11:17]
  • 评测
  • 测评结果:AC
  • 用时:1771ms
  • 内存:85608kb
  • [2023-10-14 17:11:17]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353U;
constexpr unsigned MO2 = 2U * MO;
constexpr int FFT_MAX = 23;
using Mint = ModInt<MO>;
constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U};
constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U};
constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U};
constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U};

// as[rev(i)] <- \sum_j \zeta^(ij) as[j]
void fft(Mint *as, int n) {
  assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
  int m = n;
  if (m >>= 1) {
    for (int i = 0; i < m; ++i) {
      const unsigned x = as[i + m].x;  // < MO
      as[i + m].x = as[i].x + MO - x;  // < 2 MO
      as[i].x += x;  // < 2 MO
    }
  }
  if (m >>= 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + m; ++i) {
        const unsigned x = (prod * as[i + m]).x;  // < MO
        as[i + m].x = as[i].x + MO - x;  // < 3 MO
        as[i].x += x;  // < 3 MO
      }
      prod *= FFT_RATIOS[__builtin_ctz(++h)];
    }
  }
  for (; m; ) {
    if (m >>= 1) {
      Mint prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < MO
          as[i + m].x = as[i].x + MO - x;  // < 4 MO
          as[i].x += x;  // < 4 MO
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
    if (m >>= 1) {
      Mint prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < MO
          as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
          as[i + m].x = as[i].x + MO - x;  // < 3 MO
          as[i].x += x;  // < 3 MO
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
  }
  for (int i = 0; i < n; ++i) {
    as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
    as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x;  // < MO
  }
}

// as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]
void invFft(Mint *as, int n) {
  assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
  int m = 1;
  if (m < n >> 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + m; ++i) {
        const unsigned long long y = as[i].x + MO - as[i + m].x;  // < 2 MO
        as[i].x += as[i + m].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
    }
    m <<= 1;
  }
  for (; m < n >> 1; m <<= 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + (m >> 1); ++i) {
        const unsigned long long y = as[i].x + MO2 - as[i + m].x;  // < 4 MO
        as[i].x += as[i + m].x;  // < 4 MO
        as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      for (int i = i0 + (m >> 1); i < i0 + m; ++i) {
        const unsigned long long y = as[i].x + MO - as[i + m].x;  // < 2 MO
        as[i].x += as[i + m].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
    }
  }
  if (m < n) {
    for (int i = 0; i < m; ++i) {
      const unsigned y = as[i].x + MO2 - as[i + m].x;  // < 4 MO
      as[i].x += as[i + m].x;  // < 4 MO
      as[i + m].x = y;  // < 4 MO
    }
  }
  const Mint invN = Mint(n).inv();
  for (int i = 0; i < n; ++i) {
    as[i] *= invN;
  }
}

void fft(vector<Mint> &as) {
  fft(as.data(), as.size());
}
void invFft(vector<Mint> &as) {
  invFft(as.data(), as.size());
}

vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) {
  if (as.empty() || bs.empty()) return {};
  const int len = as.size() + bs.size() - 1;
  int n = 1;
  for (; n < len; n <<= 1) {}
  as.resize(n); fft(as);
  bs.resize(n); fft(bs);
  for (int i = 0; i < n; ++i) as[i] *= bs[i];
  invFft(as);
  as.resize(len);
  return as;
}
vector<Mint> square(vector<Mint> as) {
  if (as.empty()) return {};
  const int len = as.size() + as.size() - 1;
  int n = 1;
  for (; n < len; n <<= 1) {}
  as.resize(n); fft(as);
  for (int i = 0; i < n; ++i) as[i] *= as[i];
  invFft(as);
  as.resize(len);
  return as;
}
////////////////////////////////////////////////////////////////////////////////


#ifdef LOCAL
constexpr int B = 3;
#else
constexpr int B = 400;
#endif

constexpr int V = 9;

int M;
int C[110], D[110];
Mint W[110];
int N, K;

vector<Mint> baby[B + 1][V][V];

int main() {
  for (; ~scanf("%d", &M); ) {
    for (int m = 0; m < M; ++m) {
      scanf("%d%d%u", &C[m], &D[m], &W[m].x);
    }
    scanf("%d%d", &N, &K);
    
    for (int n = 0; n <= B; ++n) {
      const int off = n + (V - 1);
      for (int u = 0; u < V; ++u) for (int v = 0; v < V; ++v) {
        baby[n][u][v].assign(off + 1 + off, 0);
      }
    }
    for (int u = 0; u < V; ++u) {
      baby[0][u][u][V - 1] += 1;
    }
    for (int u = 0; u < V - 1; ++u) {
      baby[1][u][u + 1][V] += 1;
    }
    for (int m = 0; m < M; ++m) {
      baby[1][C[m] - 1][0][V + D[m]] += W[m];
    }
    
    for (int n = 2; n <= B; ++n) {
      const int off = n + (V - 1);
      const int off1 = (n - 1) + (V - 1);
      for (int u = 0; u < V; ++u) for (int v = 0; v < V; ++v) for (int w = 0; w < V; ++w) if (v + 1 == w || w == 0) {
        for (int l = -V; l <= V; ++l) if (baby[1][v][w][V + l]) {
          for (int k = -off1; k <= off1; ++k) if (baby[n - 1][u][v][off1 + k]) {
            baby[n][u][w][off + (k + l)] += baby[n - 1][u][v][off1 + k] * baby[1][v][w][V + l];
          }
        }
      }
    }
// for(int n=0;n<=B;++n){cerr<<n<<": "<<baby[n][0][0]<<endl;}
    
    const int lim = (N/B) * (B + (V - 1));
    int len = 1;
    for (; len < lim + 1 + lim; len <<= 1) {}
    
    vector<Mint> fss[V][V], gss[V], hss[V], tail[V];
    for (int u = 0; u < V; ++u) for (int v = 0; v < V; ++v) {
      fss[u][v] = baby[B][u][v];
      fss[u][v].resize(len, 0);
      fft(fss[u][v]);
    }
    for (int u = 0; u < V; ++u) {
      gss[u].assign(len, (u == 0) ? 1 : 0);
      hss[u].assign(len, 0);
      tail[u].assign(len + 1, 0);
      tail[u][0] = (u == 0) ? 1 : 0;
    }
    
    vector<Mint> ans(N + 1, 0);
    for (int q = 0; q <= N; q += B) {
      const int offQ = (q/B) * (B + (V - 1));
      for (int r = 0; r < B && q + r <= N; ++r) {
        const int offR = r + (V - 1);
        for (int u = 0; u < V; ++u) for (int k = -offR; k <= +offR; ++k) {
          ans[q + r] += tail[u][min(max(offQ + (K - k), 0), len)] * baby[r][u][0][offR + k];
        }
      }
      for (int u = 0; u < V; ++u) {
        fill(hss[u].begin(), hss[u].end(), 0);
      }
      for (int u = 0; u < V; ++u) for (int v = 0; v < V; ++v) {
        for (int i = 0; i < len; ++i) {
          hss[v][i] += gss[u][i] * fss[u][v][i];
        }
      }
      for (int u = 0; u < V; ++u) {
        copy(hss[u].begin(), hss[u].end(), gss[u].begin());
        invFft(hss[u]);
        for (int i = len; --i >= 0; ) {
          tail[u][i] = hss[u][i] + tail[u][i + 1];
        }
      }
    }
    
    for (int n = 1; n <= N; ++n) {
      printf("%u\n", ans[n].x);
    }
#ifdef LOCAL
vector<map<int,Mint>>dp(N+1);
dp[0][0]=1;
for(int n=0;n<=N;++n)for(const auto&kv:dp[n]){
 for(int m=0;m<M;++m){
  const int nn=n+C[m];
  if(nn<=N)dp[nn][kv.first+D[m]]+=kv.second*W[m];
 }
}
vector<Mint>brt(N+1,0);
for(int n=0;n<=N;++n)for(const auto&kv:dp[n]){
 if(kv.first>=K)brt[n]+=kv.second;
}
if(brt!=ans){
 cerr<<"brt = "<<brt<<endl;
 cerr<<"ans = "<<ans<<endl;
 for(int n=0;n<=N;++n){cerr<<"dp["<<n<<"] = ";pv(dp[n].begin(),dp[n].end());}
}
assert(brt==ans);
#endif
  }
  return 0;
}

这程序好像有点Bug,我给组数据试试?

详细

Test #1:

score: 100
Accepted
time: 17ms
memory: 58104kb

input:

1
1 1 2
5 2

output:

0
4
8
16
32

result:

ok 5 number(s): "0 4 8 16 32"

Test #2:

score: 0
Accepted
time: 15ms
memory: 58124kb

input:

2
1 -1 1
1 1 2
4 2

output:

0
4
8
48

result:

ok 4 number(s): "0 4 8 48"

Test #3:

score: 0
Accepted
time: 264ms
memory: 58136kb

input:

99
1 -1 4155
1 0 1361
1 1 5264
2 -2 1903
2 -1 3676
2 0 9643
2 1 6909
2 2 4902
3 -3 3561
3 -2 8489
3 -1 4948
3 0 1282
3 1 3653
3 2 674
3 3 2220
4 -4 5402
4 -3 6923
4 -2 3831
4 -1 9369
4 0 3878
4 1 259
4 2 9008
4 3 2619
4 4 3971
5 -5 3
5 -4 1945
5 -3 9781
5 -2 6504
5 -1 2392
5 0 2685
5 1 5313
5 2 6698...

output:

6625
87655919
636581604
585696387
17620788
88066998
904901665
846840737
360330214
620333919
136263062
39075213
241172245
519044851
379562425
532682226
777144743
462280426
307921116
700072043
707231396
323401925
598314068
841884023
28387679
166454723
975772805
448135193
488726970
475593671
612544405
...

result:

ok 50 numbers

Test #4:

score: 0
Accepted
time: 245ms
memory: 58140kb

input:

99
1 -1 4155
1 0 1361
1 1 5264
2 -2 1903
2 -1 3676
2 0 9643
2 1 6909
2 2 4902
3 -3 3561
3 -2 8489
3 -1 4948
3 0 1282
3 1 3653
3 2 674
3 3 2220
4 -4 5402
4 -3 6923
4 -2 3831
4 -1 9369
4 0 3878
4 1 259
4 2 9008
4 3 2619
4 4 3971
5 -5 3
5 -4 1945
5 -3 9781
5 -2 6504
5 -1 2392
5 0 2685
5 1 5313
5 2 6698...

output:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
222482394
102292681
565355160
333486463
886638230
52090154
281012452
952479247
304932178
295271280
465504333
532380933
466697686
81655090
222769990
649695168
965196638
449484395
193519633
531647625
825384784
972338190
400630002
67150012...

result:

ok 131 numbers

Test #5:

score: 0
Accepted
time: 246ms
memory: 58136kb

input:

99
1 -1 4155
1 0 1361
1 1 5264
2 -2 1903
2 -1 3676
2 0 9643
2 1 6909
2 2 4902
3 -3 3561
3 -2 8489
3 -1 4948
3 0 1282
3 1 3653
3 2 674
3 3 2220
4 -4 5402
4 -3 6923
4 -2 3831
4 -1 9369
4 0 3878
4 1 259
4 2 9008
4 3 2619
4 4 3971
5 -5 3
5 -4 1945
5 -3 9781
5 -2 6504
5 -1 2392
5 0 2685
5 1 5313
5 2 6698...

output:

0
0
0
0
0
0
0
0
0
9347849
942974795
318066180
278731032
587652157
434259249
126876923
16289901
123413264
719603917
254105333
15119937
24263100
889628559
948576022
694493917
964003437
228253365
52984044
254401943
310992697
233279578
253910650
898447558
524407420
957548516
901926896
2245698
91236941
8...

result:

ok 228 numbers

Test #6:

score: 0
Accepted
time: 249ms
memory: 58136kb

input:

99
1 -1 4155
1 0 1361
1 1 5264
2 -2 1903
2 -1 3676
2 0 9643
2 1 6909
2 2 4902
3 -3 3561
3 -2 8489
3 -1 4948
3 0 1282
3 1 3653
3 2 674
3 3 2220
4 -4 5402
4 -3 6923
4 -2 3831
4 -1 9369
4 0 3878
4 1 259
4 2 9008
4 3 2619
4 4 3971
5 -5 3
5 -4 1945
5 -3 9781
5 -2 6504
5 -1 2392
5 0 2685
5 1 5313
5 2 6698...

output:

0
0
0
0
0
0
0
0
0
0
0
823233314
56884775
409561125
803981488
839767063
890265463
385665407
24390958
244235164
479515345
412009151
206386153
128897565
962065073
224758497
357196269
984807250
576030233
223162017
716194180
565496686
166080856
37562000
597023700
855251872
854857206
890776034
760485373
6...

result:

ok 60 numbers

Test #7:

score: 0
Accepted
time: 13ms
memory: 58176kb

input:

1
1 1 1
1 0

output:

1

result:

ok 1 number(s): "1"

Test #8:

score: 0
Accepted
time: 1755ms
memory: 85568kb

input:

99
1 -1 41
1 0 8467
1 1 6334
2 -2 10000
2 -1 9169
2 0 5724
2 1 1478
2 2 9358
3 -3 0
3 -2 4464
3 -1 5705
3 0 8145
3 1 3281
3 2 6827
3 3 9961
4 -4 491
4 -3 2995
4 -2 1942
4 -1 4827
4 0 5436
4 1 2391
4 2 4604
4 3 3902
4 4 153
5 -5 292
5 -4 2382
5 -3 7421
5 -2 8716
5 -1 9718
5 0 9895
5 1 5447
5 2 1726
5...

output:

14801
219605549
918066257
950671703
802417909
12689425
651470453
668728795
716248950
629320552
39202969
834545918
227150851
737151164
699962737
848039906
604466885
101476713
871998375
232547830
87732586
709395837
157267428
361236765
912370001
804578386
429235235
173468017
920593010
313629484
5617529...

result:

ok 30000 numbers

Test #9:

score: 0
Accepted
time: 1770ms
memory: 85588kb

input:

99
1 -1 6541
1 0 4833
1 1 1115
2 -2 4639
2 -1 9658
2 0 2704
2 1 9930
2 2 3977
3 -3 2306
3 -2 1673
3 -1 2386
3 0 5021
3 1 8745
3 2 6924
3 3 9072
4 -4 6270
4 -3 5829
4 -2 6777
4 -1 5573
4 0 5097
4 1 6512
4 2 3986
4 3 3290
4 4 9161
5 -5 8636
5 -4 2355
5 -3 4767
5 -2 3655
5 -1 5574
5 0 4031
5 1 2052
5 2...

output:

12489
156006029
172365264
222074615
800372787
922955199
527126241
767348550
75160194
135901239
786397568
386475566
18834135
418363890
718680334
385311091
708403725
5329556
437092399
370602391
402897512
463572992
873474889
902787434
201212747
158768241
296664479
513077561
722474520
149862063
61342114...

result:

ok 30000 numbers

Test #10:

score: 0
Accepted
time: 1757ms
memory: 85552kb

input:

99
1 -1 2813
1 0 9514
1 1 4309
2 -2 7616
2 -1 8935
2 0 7451
2 1 600
2 2 5249
3 -3 6519
3 -2 1556
3 -1 2798
3 0 303
3 1 6224
3 2 1008
3 3 5844
4 -4 2609
4 -3 4989
4 -2 2702
4 -1 3195
4 0 485
4 1 3093
4 2 4343
4 3 523
4 4 1587
5 -5 9314
5 -4 9503
5 -3 7448
5 -2 5200
5 -1 3458
5 0 6618
5 1 580
5 2 9796...

output:

16636
276786347
213093791
546823887
31796708
208723341
35285279
679656212
459998578
207814458
133040884
495913022
688862910
794939735
478776133
366117249
817609027
240203216
436688061
926254959
677536480
617748132
592828544
294058028
136330011
459248864
762961915
763444812
365878600
268086280
486254...

result:

ok 30000 numbers

Test #11:

score: 0
Accepted
time: 1771ms
memory: 85596kb

input:

99
1 -1 2154
1 0 5721
1 1 7189
2 -2 9976
2 -1 1329
2 0 2368
2 1 8692
2 2 1425
3 -3 555
3 -2 3434
3 -1 6549
3 0 7441
3 1 9512
3 2 145
3 3 8060
4 -4 1718
4 -3 3753
4 -2 6139
4 -1 2423
4 0 6279
4 1 5996
4 2 6687
4 3 2529
4 4 2549
5 -5 7437
5 -4 9866
5 -3 2949
5 -2 193
5 -1 3195
5 0 3297
5 1 416
5 2 828...

output:

7189
133948376
747955796
731737884
77331863
272865253
466674870
732316155
288724990
600896585
859300478
969350326
974324827
44667439
885092902
215739004
352200494
57045590
673351279
420802217
289546573
10216231
430491015
333742960
193699888
864019581
646717930
755433748
930641036
39879732
637271450
...

result:

ok 30000 numbers

Test #12:

score: 0
Accepted
time: 1746ms
memory: 85576kb

input:

99
1 -1 7487
1 0 8297
1 1 7518
2 -2 8177
2 -1 7773
2 0 2270
2 1 1763
2 2 2668
3 -3 7192
3 -2 3985
3 -1 3102
3 0 8480
3 1 9213
3 2 7627
3 3 4802
4 -4 4099
4 -3 527
4 -2 2625
4 -1 1543
4 0 1924
4 1 1023
4 2 9972
4 3 3061
4 4 4181
5 -5 1003
5 -4 7432
5 -3 7505
5 -2 7593
5 -1 2725
5 0 3031
5 1 8492
5 2 ...

output:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...

result:

ok 30000 numbers

Test #13:

score: 0
Accepted
time: 1764ms
memory: 85568kb

input:

99
1 -1 4596
1 0 3737
1 1 3261
2 -2 195
2 -1 2525
2 0 1264
2 1 8260
2 2 6202
3 -3 8116
3 -2 5030
3 -1 326
3 0 9011
3 1 771
3 2 6411
3 3 5547
4 -4 1153
4 -3 1520
4 -2 9790
4 -1 4924
4 0 188
4 1 1763
4 2 4940
4 3 851
4 4 8662
5 -5 3829
5 -4 900
5 -3 7713
5 -2 8958
5 -1 7578
5 0 8365
5 1 3007
5 2 1477
...

output:

6998
78962842
201770631
503304665
718862700
247839950
500584818
153909918
166811095
391358471
642541199
742518229
397759650
631887197
490537419
67094197
874735524
922692846
129913392
142031577
718224778
76163465
924853904
179455345
977333137
34695330
10695743
301700576
82110438
492736729
894479113
9...

result:

ok 30000 numbers

Test #14:

score: 0
Accepted
time: 1739ms
memory: 85528kb

input:

99
1 -1 67
1 0 2848
1 1 4675
2 -2 2938
2 -1 2223
2 0 2142
2 1 3754
2 2 6511
3 -3 2741
3 -2 175
3 -1 1459
3 0 7825
3 1 3221
3 2 7870
3 3 1626
4 -4 1934
4 -3 5205
4 -2 1783
4 -1 3850
4 0 7398
4 1 2279
4 2 2701
4 3 2193
4 4 2734
5 -5 1637
5 -4 6534
5 -3 5556
5 -2 1993
5 -1 176
5 0 5705
5 1 6962
5 2 548...

output:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...

result:

ok 30000 numbers

Test #15:

score: 0
Accepted
time: 1749ms
memory: 85564kb

input:

99
1 -1 8683
1 0 8213
1 1 3992
2 -2 5824
2 -1 5601
2 0 3392
2 1 5759
2 2 2670
3 -3 6428
3 -2 8027
3 -1 4084
3 0 75
3 1 8786
3 2 5498
3 3 4970
4 -4 6287
4 -3 3847
4 -2 2604
4 -1 503
4 0 1221
4 1 2663
4 2 5706
4 3 2363
4 4 9010
5 -5 2171
5 -4 7489
5 -3 8240
5 -2 2164
5 -1 5542
5 0 7619
5 1 913
5 2 759...

output:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...

result:

ok 30000 numbers

Test #16:

score: 0
Accepted
time: 1742ms
memory: 85516kb

input:

99
1 -1 4146
1 0 690
1 1 7949
2 -2 2843
2 -1 1430
2 0 5620
2 1 748
2 2 7067
3 -3 4536
3 -2 783
3 -1 8035
3 0 2226
3 1 5185
3 2 7038
3 3 9853
4 -4 5629
4 -3 1224
4 -2 5748
4 -1 9923
4 0 3359
4 1 2257
4 2 4766
4 3 4944
4 4 4955
5 -5 3318
5 -4 2726
5 -3 5411
5 -2 1025
5 -1 355
5 0 1001
5 1 2549
5 2 949...

output:

12785
163473933
915237012
254149183
680683147
479540734
314139149
214864529
298718215
688048492
470367494
483243065
78287652
733192051
334304326
621201728
297250370
513376725
232026014
560684823
894478168
330678358
938834519
544411347
221349086
905611720
427110161
116377854
146574295
259374356
21919...

result:

ok 30000 numbers

Test #17:

score: 0
Accepted
time: 1742ms
memory: 85536kb

input:

99
1 -1 4155
1 0 1361
1 1 5264
2 -2 1903
2 -1 3676
2 0 9643
2 1 6909
2 2 4902
3 -3 3561
3 -2 8489
3 -1 4948
3 0 1282
3 1 3653
3 2 674
3 3 2220
4 -4 5402
4 -3 6923
4 -2 3831
4 -1 9369
4 0 3878
4 1 259
4 2 9008
4 3 2619
4 4 3971
5 -5 3
5 -4 1945
5 -3 9781
5 -2 6504
5 -1 2392
5 0 2685
5 1 5313
5 2 6698...

output:

10780
116235433
512745292
102182564
227534377
212855856
35512430
725517548
508741224
210839521
415013452
495541530
777916022
798768295
600229176
930580628
669108417
598202880
774201119
913409428
310051635
313593448
406778915
158270049
463181070
277256835
62357313
962667036
33844388
337505436
1617232...

result:

ok 30000 numbers

Test #18:

score: 0
Accepted
time: 1751ms
memory: 85568kb

input:

99
1 -1 9676
1 0 5629
1 1 8650
2 -2 2598
2 -1 3309
2 0 4693
2 1 4686
2 2 80
3 -3 116
3 -2 2249
3 -1 6667
3 0 1528
3 1 6679
3 2 7864
3 3 9421
4 -4 8405
4 -3 8826
4 -2 6816
4 -1 7516
4 0 7726
4 1 8666
4 2 9087
4 3 7681
4 4 9964
5 -5 1340
5 -4 5686
5 -3 6021
5 -2 1662
5 -1 4721
5 0 6064
5 1 9309
5 2 41...

output:

23955
573857391
298943296
10820069
779475040
95900122
89723523
185888308
922246273
369556247
518801389
491834807
831660585
174969508
992080716
824972382
615675521
950857730
295856112
311318899
21519670
609865668
8371556
583904124
116709464
595118713
703071664
63155980
476296708
520364931
303340294
5...

result:

ok 30000 numbers

Test #19:

score: 0
Accepted
time: 1727ms
memory: 85580kb

input:

99
1 -1 799
1 0 8352
1 1 448
2 -2 3882
2 -1 540
2 0 8315
2 1 4575
2 2 8762
3 -3 9567
3 -2 2336
3 -1 8397
3 0 1418
3 1 9897
3 2 5828
3 3 3851
4 -4 6816
4 -3 4230
4 -2 4449
4 -1 6925
4 0 658
4 1 229
4 2 4520
4 3 940
4 4 9560
5 -5 5147
5 -4 5162
5 -3 1655
5 -2 675
5 -1 792
5 0 2361
5 1 1754
5 2 6398
5 ...

output:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...

result:

ok 30000 numbers

Test #20:

score: 0
Accepted
time: 1748ms
memory: 85544kb

input:

99
1 -1 8419
1 0 5565
1 1 3805
2 -2 7585
2 -1 6216
2 0 1450
2 1 1615
2 2 2609
3 -3 1064
3 -2 9166
3 -1 6893
3 0 6074
3 1 3509
3 2 300
3 3 9695
4 -4 9573
4 -3 5589
4 -2 3161
4 -1 1172
4 0 7968
4 1 7358
4 2 6031
4 3 6268
4 4 9426
5 -5 8510
5 -4 422
5 -3 774
5 -2 8779
5 -1 910
5 0 3552
5 1 4182
5 2 539...

output:

0
14480634
382132464
944519322
62408081
37821897
447698710
637407838
710873601
710117885
754507152
706548102
270456197
626365400
544497634
355742797
478771901
826784493
353840122
4765500
908169127
546600408
406895236
798274238
396891096
961701043
324904599
864575152
200122682
344129815
920489759
375...

result:

ok 30000 numbers

Test #21:

score: 0
Accepted
time: 1754ms
memory: 85580kb

input:

99
1 -1 6486
1 0 9677
1 1 5969
2 -2 1643
2 -1 7534
2 0 5677
2 1 2668
2 2 1068
3 -3 1991
3 -2 2196
3 -1 7783
3 0 6828
3 1 7727
3 2 9426
3 3 5871
4 -4 697
4 -3 7612
4 -2 8703
4 -1 1027
4 0 1408
4 1 5545
4 2 9508
4 3 7185
4 4 238
5 -5 4237
5 -4 6443
5 -3 1313
5 -2 2501
5 -1 8850
5 0 5128
5 1 2111
5 2 3...

output:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...

result:

ok 30000 numbers

Test #22:

score: 0
Accepted
time: 1738ms
memory: 85580kb

input:

99
1 -1 6365
1 0 2075
1 1 7586
2 -2 1386
2 -1 7833
2 0 8360
2 1 3330
2 2 6048
3 -3 8928
3 -2 9492
3 -1 2433
3 0 3840
3 1 6766
3 2 1735
3 3 9810
4 -4 1599
4 -3 1837
4 -2 1892
4 -1 1982
4 0 7328
4 1 9352
4 2 1369
4 3 1244
4 4 1794
5 -5 6608
5 -4 9252
5 -3 1647
5 -2 7432
5 -1 9535
5 0 7208
5 1 3264
5 2...

output:

16026
256859633
104822572
872797647
600569906
619463428
246571410
346526007
861617115
397391210
979595088
644563130
492102687
276440922
933473025
326484394
937791665
33392026
621833872
751119019
254320325
541742532
990052117
251315918
292159844
570404983
949753010
669740985
674378707
188068833
29476...

result:

ok 30000 numbers

Test #23:

score: 0
Accepted
time: 1753ms
memory: 85536kb

input:

99
1 -1 8162
1 0 6955
1 1 3183
2 -2 8394
2 -1 180
2 0 6097
2 1 3065
2 2 7065
3 -3 2513
3 -2 9261
3 -1 2578
3 0 1078
3 1 6878
3 2 4140
3 3 4611
4 -4 1947
4 -3 2445
4 -2 170
4 -1 9975
4 0 3489
4 1 4750
4 2 6149
4 3 3333
4 4 3865
5 -5 2214
5 -4 7282
5 -3 7007
5 -2 7432
5 -1 8896
5 0 6367
5 1 8522
5 2 4...

output:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...

result:

ok 30000 numbers

Test #24:

score: 0
Accepted
time: 1767ms
memory: 85552kb

input:

99
1 -1 3245
1 0 6473
1 1 8274
2 -2 1550
2 -1 4353
2 0 1181
2 1 4287
2 2 2699
3 -3 8110
3 -2 8643
3 -1 7465
3 0 7172
3 1 2529
3 2 9981
3 3 2112
4 -4 3476
4 -3 4381
4 -2 8247
4 -1 6890
4 0 6671
4 1 8805
4 2 2372
4 3 32
4 4 3989
5 -5 9320
5 -4 3165
5 -3 5431
5 -2 9658
5 -1 1293
5 0 7206
5 1 6578
5 2 6...

output:

17992
323726134
976240978
85656196
995389313
721342545
114561058
778932059
173419318
340330444
460190276
62788786
173863052
7760190
328127553
350788223
920573824
132129146
186363590
129280073
203556472
257137808
641131296
431032081
564068818
989266746
296151539
966385063
240136169
166643525
23048898...

result:

ok 30000 numbers

Test #25:

score: 0
Accepted
time: 1766ms
memory: 85608kb

input:

99
1 -1 3093
1 0 6584
1 1 987
2 -2 761
2 -1 493
2 0 8217
2 1 9501
2 2 7482
3 -3 9447
3 -2 5665
3 -1 753
3 0 2104
3 1 5084
3 2 9095
3 3 3525
4 -4 221
4 -3 3964
4 -2 1781
4 -1 4872
4 0 8106
4 1 3656
4 2 3343
4 3 2593
4 4 7080
5 -5 6080
5 -4 4868
5 -3 1411
5 -2 3713
5 -1 968
5 0 3251
5 1 7216
5 2 2079
...

output:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...

result:

ok 30000 numbers

Test #26:

score: 0
Accepted
time: 1758ms
memory: 85568kb

input:

99
1 -1 7922
1 0 4512
1 1 9248
2 -2 6018
2 -1 7368
2 0 3717
2 1 9714
2 2 7650
3 -3 3290
3 -2 3335
3 -1 2759
3 0 3169
3 1 1895
3 2 5303
3 3 2640
4 -4 1979
4 -3 4199
4 -2 9105
4 -1 4791
4 0 8661
4 1 8681
4 2 3652
4 3 8753
4 4 4033
5 -5 2029
5 -4 5987
5 -3 7042
5 -2 6253
5 -1 83
5 0 1420
5 1 5814
5 2 2...

output:

13760
335883993
887889718
633973106
39650655
242317723
331022121
47707171
312761489
312072688
381303356
139739423
924680896
797440931
98825261
621234405
58565496
64054316
481060016
352979699
149052562
595640910
361423032
718826674
856483402
450563653
224597419
456657140
146495860
157655903
857999791...

result:

ok 30000 numbers

Test #27:

score: 0
Accepted
time: 1749ms
memory: 85580kb

input:

99
1 -1 41
1 0 8467
1 1 6334
2 -2 10000
2 -1 9169
2 0 5724
2 1 1478
2 2 9358
3 -3 0
3 -2 4464
3 -1 5705
3 0 8145
3 1 3281
3 2 6827
3 3 9961
4 -4 491
4 -3 2995
4 -2 1942
4 -1 4827
4 0 5436
4 1 2391
4 2 4604
4 3 3902
4 4 153
5 -5 292
5 -4 2382
5 -3 7421
5 -2 8716
5 -1 9718
5 0 9895
5 1 5447
5 2 1726
5...

output:

0
0
0
0
224166795
430568553
91816617
825432809
589683966
426529589
514025077
986683173
886262765
21038753
526986891
486941167
56839645
492608275
698845177
144248308
130241
544836658
865356192
825757585
472285552
802565189
541915607
118864220
550491625
351456674
877803862
443886107
151768449
23988810...

result:

ok 30000 numbers

Test #28:

score: 0
Accepted
time: 259ms
memory: 58104kb

input:

99
1 -1 41
1 0 8467
1 1 6334
2 -2 10000
2 -1 9169
2 0 5724
2 1 1478
2 2 9358
3 -3 0
3 -2 4464
3 -1 5705
3 0 8145
3 1 3281
3 2 6827
3 3 9961
4 -4 491
4 -3 2995
4 -2 1942
4 -1 4827
4 0 5436
4 1 2391
4 2 4604
4 3 3902
4 4 153
5 -5 292
5 -4 2382
5 -3 7421
5 -2 8716
5 -1 9718
5 0 9895
5 1 5447
5 2 1726
5...

output:

14801
219605549
918066257
950671703
802417909
12689425
651470453
668726789
656702846
529799494
448867319
797291650
327815384
866928650
304675446
992037538
727739766
877086122
419920722
278777150
54657885
416067248
672603882
914458713
287250900
924172886
676259721
203441812
170974687
242140403
281533...

result:

ok 300 numbers

Test #29:

score: 0
Accepted
time: 253ms
memory: 58112kb

input:

99
1 -1 41
1 0 8467
1 1 6334
2 -2 10000
2 -1 9169
2 0 5724
2 1 1478
2 2 9358
3 -3 0
3 -2 4464
3 -1 5705
3 0 8145
3 1 3281
3 2 6827
3 3 9961
4 -4 491
4 -3 2995
4 -2 1942
4 -1 4827
4 0 5436
4 1 2391
4 2 4604
4 3 3902
4 4 153
5 -5 292
5 -4 2382
5 -3 7421
5 -2 8716
5 -1 9718
5 0 9895
5 1 5447
5 2 1726
5...

output:

0
0
0
0
224166795
430568553
91816617
825430372
517344058
915400381
471409539
731358225
283433919
52631601
335345565
981450458
475779366
259134787
95339171
867847057
158514606
470891910
688465073
32491550
936976300
578619792
134034600
67545002
167393818
860526534
963230853
346599208
160897506
3418797...

result:

ok 300 numbers

Test #30:

score: 0
Accepted
time: 250ms
memory: 58120kb

input:

99
1 -1 4155
1 0 1361
1 1 5264
2 -2 1903
2 -1 3676
2 0 9643
2 1 6909
2 2 4902
3 -3 3561
3 -2 8489
3 -1 4948
3 0 1282
3 1 3653
3 2 674
3 3 2220
4 -4 5402
4 -3 6923
4 -2 3831
4 -1 9369
4 0 3878
4 1 259
4 2 9008
4 3 2619
4 4 3971
5 -5 3
5 -4 1945
5 -3 9781
5 -2 6504
5 -1 2392
5 0 2685
5 1 5313
5 2 6698...

output:

10780
116235433
512745292
102182564
227534377
212855856
35512430
725517548
508741224
210839521
415013452
495541530
777916022
798768295
600229176
930580628
669108417
598202880
774201119
913409428
310051635
313593448
406778915
158270049
463181070
277256835
62357313
962667036
33844388
337505436
1617232...

result:

ok 300 numbers

Test #31:

score: 0
Accepted
time: 256ms
memory: 58180kb

input:

99
1 -1 4155
1 0 1361
1 1 5264
2 -2 1903
2 -1 3676
2 0 9643
2 1 6909
2 2 4902
3 -3 3561
3 -2 8489
3 -1 4948
3 0 1282
3 1 3653
3 2 674
3 3 2220
4 -4 5402
4 -3 6923
4 -2 3831
4 -1 9369
4 0 3878
4 1 259
4 2 9008
4 3 2619
4 4 3971
5 -5 3
5 -4 1945
5 -3 9781
5 -2 6504
5 -1 2392
5 0 2685
5 1 5313
5 2 6698...

output:

6625
87655919
636581604
585696387
17620788
88066998
904901665
846840737
360330214
620333919
136263062
39075213
241172245
519044851
379562425
532682226
777144743
462280426
307921116
700072043
707231396
323401925
598314068
841884023
28387679
166454723
975772805
448135193
488726970
475593671
612544405
...

result:

ok 100 numbers