QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#208921 | #4478. Jo loves counting | lhzawa | AC ✓ | 312ms | 36360kb | C++14 | 1.6kb | 2023-10-09 22:05:11 | 2023-10-09 22:05:12 |
Judging History
answer
#include<bits/stdc++.h>
using LL = long long;
using LLL = __int128;
constexpr LL mod = 29LL << 57 | 1LL;
constexpr LL M(LL a, LL b) {
a %= mod, b %= mod;
return LLL(a) * LLL(b) % mod;
}
constexpr LL J(LL a, LL b) {
a %= mod, b %= mod;
return a >= b ? a - b : mod + a - b;
}
constexpr LL qpow(LL a, LL b) {
a %= mod;
LL v = 1;
for (; b; b >>= 1, a = M(a, a))
if (b & 1) v = M(v, a);
return v;
}
constexpr LL inv2 = qpow(2LL, mod - 2);
const int maxm = 1e6, maxp = 78948;
const LL maxn = LL(1e12);
int m;
int p[maxm + 1];
LL h[maxp + 1][42];
LL n;
LL ans;
void dfs(int w, LL x, LL v) {
if (w > m || x * p[w] > n || x * p[w] * p[w] > n) {
ans = (ans + M(v, M(M(n / x, n / x + 1), inv2))) % mod;
return ;
}
dfs(w + 1, x, v);
x *= 1LL * p[w] * p[w];
for (int i = 2; x <= n; x *= p[w], i++) dfs(w + 1, x, M(v, h[w][i]));
}
std::bitset<maxm + 1> vis;
LL inv[42];
int main() {
inv[1] = 1LL;
for (int i = 2; i < 42; i++) inv[i] = M(mod - mod / i, inv[mod % i]);
for (int i = 2; i <= maxm; i++) {
if (! vis[i]) {
p[++m] = i;
h[m][0] = 1LL, h[m][1] = 0LL;
LL x = 1LL * i * i;
LL fv = M(x, inv2), ghv = x;
for (int j = 2; x <= maxn; j++, x *= i) {
h[m][j] = J(fv, ghv), fv = M(fv, M(M(j, i), inv[j + 1])), ghv = M((ghv + h[m][j]) % mod, i) % mod;
}
}
for (int j = 1; j <= m && i * p[j] <= maxm; j++) {
vis[i * p[j]] = 1;
if (i % p[j] == 0) break;
}
}
int T;
scanf("%d", &T);
for (; T; T--) {
scanf("%lld", &n);
ans = 0;
dfs(1, 1LL, 1LL);
printf("%lld\n", M(ans, qpow(n, mod - 2)));
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 312ms
memory: 36360kb
input:
12 4 959139 9859 125987 209411 965585325539 213058376259 451941492387 690824608515 934002691939 1000000000000 1
output:
2 2544652967005436170 1531132428015608197 4112905740393076193 2210911161352244432 3734327250979959061 3166689602614938339 2205751131915532448 1440445581699720020 350511728590182760 1099683734530790325 1
result:
ok 12 lines