QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#207065 | #7559. Bocchi the Rock | ucup-team180# | AC ✓ | 1210ms | 6824kb | C++17 | 48.7kb | 2023-10-08 06:21:23 | 2023-10-08 06:21:23 |
Judging History
answer
#pragma region Macros
#ifdef noimi
#include "my_template.hpp"
#else
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <immintrin.h>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <variant>
#ifdef noimi
#define oj_local(a, b) b
#else
#define oj_local(a, b) a
#endif
#define LOCAL if(oj_local(0, 1))
#define OJ if(oj_local(1, 0))
using namespace std;
using ll = long long;
using ull = unsigned long long int;
using i128 = __int128_t;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using ld = long double;
template <typename T> using vc = vector<T>;
template <typename T> using vvc = vector<vc<T>>;
template <typename T> using vvvc = vector<vvc<T>>;
using vi = vc<int>;
using vl = vc<ll>;
using vpi = vc<pii>;
using vpl = vc<pll>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;
template <typename T> int si(const T &x) { return x.size(); }
template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); }
template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); }
vi iota(int n) {
vi a(n);
return iota(a.begin(), a.end(), 0), a;
}
template <typename T> vi iota(const vector<T> &a, bool greater = false) {
vi res(a.size());
iota(res.begin(), res.end(), 0);
sort(res.begin(), res.end(), [&](int i, int j) {
if(greater) return a[i] > a[j];
return a[i] < a[j];
});
return res;
}
// macros
#define overload5(a, b, c, d, e, name, ...) name
#define overload4(a, b, c, d, name, ...) name
#define endl '\n'
#define REP0(n) for(ll jidlsjf = 0; jidlsjf < n; ++jidlsjf)
#define REP1(i, n) for(ll i = 0; i < (n); ++i)
#define REP2(i, a, b) for(ll i = (a); i < (b); ++i)
#define REP3(i, a, b, c) for(ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)
#define per0(n) for(int jidlsjf = 0; jidlsjf < (n); ++jidlsjf)
#define per1(i, n) for(ll i = (n)-1; i >= 0; --i)
#define per2(i, a, b) for(ll i = (a)-1; i >= b; --i)
#define per3(i, a, b, c) for(ll i = (a)-1; i >= (b); i -= (c))
#define per(...) overload4(__VA_ARGS__, per3, per2, per1, per0)(__VA_ARGS__)
#define fore0(a) rep(a.size())
#define fore1(i, a) for(auto &&i : a)
#define fore2(a, b, v) for(auto &&[a, b] : v)
#define fore3(a, b, c, v) for(auto &&[a, b, c] : v)
#define fore4(a, b, c, d, v) for(auto &&[a, b, c, d] : v)
#define fore(...) overload5(__VA_ARGS__, fore4, fore3, fore2, fore1, fore0)(__VA_ARGS__)
#define setbits(j, n) for(ll iiiii = (n), j = lowbit(iiiii); iiiii; iiiii ^= 1 << j, j = lowbit(iiiii))
#define perm(v) for(bool permrepflag = true; (permrepflag ? exchange(permrepflag, false) : next_permutation(all(v)));)
#define fi first
#define se second
#define pb push_back
#define ppb pop_back
#define ppf pop_front
#define eb emplace_back
#define drop(s) cout << #s << endl, exit(0)
#define si(c) (int)(c).size()
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define lbg(c, x) distance((c).begin(), lower_bound(all(c), (x), greater{}))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define ubg(c, x) distance((c).begin(), upper_bound(all(c), (x), greater{}))
#define rng(v, l, r) v.begin() + (l), v.begin() + (r)
#define all(c) begin(c), end(c)
#define rall(c) rbegin(c), rend(c)
#define SORT(v) sort(all(v))
#define REV(v) reverse(all(v))
#define UNIQUE(x) SORT(x), x.erase(unique(all(x)), x.end())
template <typename T = ll, typename S> T SUM(const S &v) { return accumulate(all(v), T(0)); }
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define overload2(_1, _2, name, ...) name
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
constexpr pii dx4[4] = {pii{1, 0}, pii{0, 1}, pii{-1, 0}, pii{0, -1}};
constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};
namespace yesno_impl {
const string YESNO[2] = {"NO", "YES"};
const string YesNo[2] = {"No", "Yes"};
const string yesno[2] = {"no", "yes"};
const string firstsecond[2] = {"second", "first"};
const string FirstSecond[2] = {"Second", "First"};
const string possiblestr[2] = {"impossible", "possible"};
const string Possiblestr[2] = {"Impossible", "Possible"};
void YES(bool t = 1) { cout << YESNO[t] << endl; }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { cout << YesNo[t] << endl; }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { cout << yesno[t] << endl; }
void no(bool t = 1) { yes(!t); }
void first(bool t = 1) { cout << firstsecond[t] << endl; }
void First(bool t = 1) { cout << FirstSecond[t] << endl; }
void possible(bool t = 1) { cout << possiblestr[t] << endl; }
void Possible(bool t = 1) { cout << Possiblestr[t] << endl; }
}; // namespace yesno_impl
using namespace yesno_impl;
#define INT(...) \
int __VA_ARGS__; \
IN(__VA_ARGS__)
#define INTd(...) \
int __VA_ARGS__; \
IN2(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
IN(__VA_ARGS__)
#define LLd(...) \
ll __VA_ARGS__; \
IN2(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
IN(__VA_ARGS__)
#define CHR(...) \
char __VA_ARGS__; \
IN(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
IN(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
IN(name)
#define VECd(type, name, size) \
vector<type> name(size); \
IN2(name)
#define VEC2(type, name1, name2, size) \
vector<type> name1(size), name2(size); \
for(int i = 0; i < size; i++) IN(name1[i], name2[i])
#define VEC2d(type, name1, name2, size) \
vector<type> name1(size), name2(size); \
for(int i = 0; i < size; i++) IN2(name1[i], name2[i])
#define VEC3(type, name1, name2, name3, size) \
vector<type> name1(size), name2(size), name3(size); \
for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i])
#define VEC3d(type, name1, name2, name3, size) \
vector<type> name1(size), name2(size), name3(size); \
for(int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i])
#define VEC4(type, name1, name2, name3, name4, size) \
vector<type> name1(size), name2(size), name3(size), name4(size); \
for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i], name4[i]);
#define VEC4d(type, name1, name2, name3, name4, size) \
vector<type> name1(size), name2(size), name3(size), name4(size); \
for(int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i], name4[i]);
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
IN(name)
#define VVd(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
IN2(name)
int scan() { return getchar(); }
void scan(int &a) { cin >> a; }
void scan(long long &a) { cin >> a; }
void scan(char &a) { cin >> a; }
void scan(double &a) { cin >> a; }
void scan(string &a) { cin >> a; }
template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }
template <class T> void scan(vector<T> &);
template <class T> void scan(vector<T> &a) {
for(auto &i : a) scan(i);
}
template <class T> void scan(T &a) { cin >> a; }
void IN() {}
void IN2() {}
template <class Head, class... Tail> void IN(Head &head, Tail &...tail) {
scan(head);
IN(tail...);
}
template <class Head, class... Tail> void IN2(Head &head, Tail &...tail) {
scan(head);
--head;
IN2(tail...);
}
template <int p = -1> void pat() {}
template <int p = -1, class Head, class... Tail> void pat(Head &h, Tail &...tail) {
h += p;
pat<p>(tail...);
}
template <typename T, typename S> T ceil(T x, S y) {
assert(y);
return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y));
}
template <typename T, typename S> T floor(T x, S y) {
assert(y);
return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1)));
}
template <typename T, typename S, typename U> U bigmul(const T &x, const S &y, const U &lim) { // clamp(x * y, -lim, lim)
if(x < 0 and y < 0) return bigmul(-x, -y, lim);
if(x < 0) return -bigmul(-x, y, lim);
if(y < 0) return -bigmul(x, -y, lim);
return y == 0 or x <= lim / y ? x * y : lim;
}
template <class T> T POW(T x, int n) {
T res = 1;
for(; n; n >>= 1, x *= x)
if(n & 1) res *= x;
return res;
}
template <class T, class S> T POW(T x, S n, const ll &mod) {
T res = 1;
x %= mod;
for(; n; n >>= 1, x = x * x % mod)
if(n & 1) res = res * x % mod;
return res;
}
vector<pll> factor(ll x) {
vector<pll> ans;
for(ll i = 2; i * i <= x; i++)
if(x % i == 0) {
ans.push_back({i, 1});
while((x /= i) % i == 0) ans.back().second++;
}
if(x != 1) ans.push_back({x, 1});
return ans;
}
template <class T> vector<T> divisor(T x) {
vector<T> ans;
for(T i = 1; i * i <= x; i++)
if(x % i == 0) {
ans.pb(i);
if(i * i != x) ans.pb(x / i);
}
return ans;
}
template <typename T> void zip(vector<T> &x) {
vector<T> y = x;
UNIQUE(y);
for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }
}
template <class S> void fold_in(vector<S> &v) {}
template <typename Head, typename... Tail, class S> void fold_in(vector<S> &v, Head &&a, Tail &&...tail) {
for(auto e : a) v.emplace_back(e);
fold_in(v, tail...);
}
template <class S> void renumber(vector<S> &v) {}
template <typename Head, typename... Tail, class S> void renumber(vector<S> &v, Head &&a, Tail &&...tail) {
for(auto &&e : a) e = lb(v, e);
renumber(v, tail...);
}
template <class S, class... Args> vector<S> zip(vector<S> &head, Args &&...args) {
vector<S> v;
fold_in(v, head, args...);
sort(all(v)), v.erase(unique(all(v)), v.end());
renumber(v, head, args...);
return v;
}
template <typename S> void rearrange(const vector<S> &id) {}
template <typename S, typename T> void rearrange_exec(const vector<S> &id, vector<T> &v) {
vector<T> w(v.size());
rep(i, si(id)) w[i] = v[id[i]];
v.swap(w);
}
// 並び替える順番, 並び替える vector 達
template <typename S, typename Head, typename... Tail> void rearrange(const vector<S> &id, Head &a, Tail &...tail) {
rearrange_exec(id, a);
rearrange(id, tail...);
}
template <typename T> vector<T> RUI(const vector<T> &v) {
vector<T> res(v.size() + 1);
for(int i = 0; i < v.size(); i++) res[i + 1] = res[i] + v[i];
return res;
}
template <typename T> void zeta_supersetsum(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] += f[b | i];
}
template <typename T> void zeta_subsetsum(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] += f[b];
}
template <typename T> void mobius_subset(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] -= f[b | i];
}
template <typename T> void mobius_superset(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] -= f[b];
}
// 反時計周りに 90 度回転
template <typename T> void rot(vector<vector<T>> &v) {
if(empty(v)) return;
int n = v.size(), m = v[0].size();
vector<vector<T>> res(m, vector<T>(n));
rep(i, n) rep(j, m) res[m - 1 - j][i] = v[i][j];
v.swap(res);
}
vector<int> counter(const vector<int> &v, int max_num = -1) {
if(max_num == -1) max_num = MAX(v);
vector<int> res(max_num + 1);
fore(e, v) res[e]++;
return res;
}
// x in [l, r)
template <class T, class S> bool inc(const T &x, const S &l, const S &r) { return l <= x and x < r; }
template <class T, class S> bool inc(const T &x, const pair<S, S> &p) { return p.first <= x and x < p.second; }
// 便利関数
constexpr ll ten(int n) { return n == 0 ? 1 : ten(n - 1) * 10; }
constexpr ll tri(ll n) { return n * (n + 1) / 2; }
// l + ... + r
constexpr ll tri(ll l, ll r) { return (l + r) * (r - l + 1) / 2; }
ll max(int x, ll y) { return max((ll)x, y); }
ll max(ll x, int y) { return max(x, (ll)y); }
int min(int x, ll y) { return min((ll)x, y); }
int min(ll x, int y) { return min(x, (ll)y); }
// bit 演算系
#define bit(i) (1LL << i) // (1 << i)
#define test(b, i) (b >> i & 1) // b の i bit 目が立っているか
ll pow2(int i) { return 1LL << i; }
int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); }
// int allbit(int n) { return (1 << n) - 1; }
constexpr ll mask(int n) { return (1LL << n) - 1; }
// int popcount(signed t) { return __builtin_popcount(t); }
// int popcount(ll t) { return __builtin_popcountll(t); }
int popcount(uint64_t t) { return __builtin_popcountll(t); }
static inline uint64_t popcount64(uint64_t x) {
uint64_t m1 = 0x5555555555555555ll;
uint64_t m2 = 0x3333333333333333ll;
uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll;
uint64_t h01 = 0x0101010101010101ll;
x -= (x >> 1) & m1;
x = (x & m2) + ((x >> 2) & m2);
x = (x + (x >> 4)) & m4;
return (x * h01) >> 56;
}
bool ispow2(int i) { return i && (i & -i) == i; }
ll rnd(ll l, ll r) { //[l, r)
#ifdef noimi
static mt19937_64 gen;
#else
static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
#endif
return uniform_int_distribution<ll>(l, r - 1)(gen);
}
ll rnd(ll n) { return rnd(0, n); }
template <class t> void random_shuffle(vc<t> &a) { rep(i, si(a)) swap(a[i], a[rnd(0, i + 1)]); }
int in() {
int x;
cin >> x;
return x;
}
ll lin() {
unsigned long long x;
cin >> x;
return x;
}
template <class T, class S> pair<T, S> operator-(const pair<T, S> &x) { return pair<T, S>(-x.first, -x.second); }
template <class T, class S> pair<T, S> operator-(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi - y.fi, x.se - y.se); }
template <class T, class S> pair<T, S> operator+(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi + y.fi, x.se + y.se); }
template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.fi, r.fi), min(l.se, r.se)); }
template <class T, class S> pair<T, S> operator+=(pair<T, S> &l, const pair<T, S> &r) { return l = l + r; }
template <class T, class S> pair<T, S> operator-=(pair<T, S> &l, const pair<T, S> &r) { return l = l - r; }
template <class T> bool intersect(const pair<T, T> &l, const pair<T, T> &r) { return (l.se < r.se ? r.fi < l.se : l.fi < r.se); }
template <class T> vector<T> &operator++(vector<T> &v) {
fore(e, v) e++;
return v;
}
template <class T> vector<T> operator++(vector<T> &v, int) {
auto res = v;
fore(e, v) e++;
return res;
}
template <class T> vector<T> &operator--(vector<T> &v) {
fore(e, v) e--;
return v;
}
template <class T> vector<T> operator--(vector<T> &v, int) {
auto res = v;
fore(e, v) e--;
return res;
}
template <class T> void connect(vector<T> &l, const vector<T> &r) { fore(e, r) l.eb(e); }
template <class T> vector<T> operator+(const vector<T> &l, const vector<T> &r) {
vector<T> res(max(si(l), si(r)));
rep(i, si(l)) res[i] += l[i];
rep(i, si(r)) res[i] += r[i];
return res;
}
template <class T> vector<T> operator-(const vector<T> &l, const vector<T> &r) {
vector<T> res(max(si(l), si(r)));
rep(i, si(l)) res[i] += l[i];
rep(i, si(r)) res[i] -= r[i];
return res;
}
template <class T> vector<T> &operator+=(const vector<T> &l, const vector<T> &r) {
if(si(l) < si(r)) l.resize(si(r));
rep(i, si(r)) l[i] += r[i];
return l;
}
template <class T> vector<T> &operator-=(const vector<T> &l, const vector<T> &r) {
if(si(l) < si(r)) l.resize(si(r));
rep(i, si(r)) l[i] -= r[i];
return l;
}
template <class T> vector<T> &operator+=(vector<T> &v, const T &x) {
fore(e, v) e += x;
return v;
}
template <class T> vector<T> &operator-=(vector<T> &v, const T &x) {
fore(e, v) e -= x;
return v;
}
template <typename T> struct edge {
int from, to;
T cost;
int id;
edge(int to, T cost) : from(-1), to(to), cost(cost) {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}
constexpr bool operator<(const edge<T> &rhs) const noexcept { return cost < rhs.cost; }
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
friend ostream operator<<(ostream &os, const edge &e) { return os << e.to; }
};
template <typename T> using Edges = vector<edge<T>>;
template <typename T = int> Edges<T> read_edges(int m, bool weighted = false) {
Edges<T> res;
res.reserve(m);
for(int i = 0; i < m; i++) {
int u, v, c = 0;
scan(u), scan(v), u--, v--;
if(weighted) scan(c);
res.eb(u, v, c, i);
}
return res;
}
using Tree = vector<vector<int>>;
using Graph = vector<vector<int>>;
template <class T> using Wgraph = vector<vector<edge<T>>>;
Graph getG(int n, int m = -1, bool directed = false, int margin = 1) {
Tree res(n);
if(m == -1) m = n - 1;
while(m--) {
int a, b;
cin >> a >> b;
a -= margin, b -= margin;
res[a].emplace_back(b);
if(!directed) res[b].emplace_back(a);
}
return res;
}
Graph getTreeFromPar(int n, int margin = 1) {
Graph res(n);
for(int i = 1; i < n; i++) {
int a;
cin >> a;
res[a - margin].emplace_back(i);
}
return res;
}
template <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {
Wgraph<T> res(n);
if(m == -1) m = n - 1;
while(m--) {
int a, b;
T c;
scan(a), scan(b), scan(c);
a -= margin, b -= margin;
res[a].emplace_back(b, c);
if(!directed) res[b].emplace_back(a, c);
}
return res;
}
void add(Graph &G, int x, int y) { G[x].eb(y), G[y].eb(x); }
template <class S, class T> void add(Wgraph<S> &G, int x, int y, T c) { G[x].eb(y, c), G[y].eb(x, c); }
#define TEST \
INT(testcases); \
while(testcases--)
i128 abs(const i128 &x) { return x > 0 ? x : -x; }
istream &operator>>(istream &is, i128 &v) {
string s;
is >> s;
v = 0;
for(int i = 0; i < (int)s.size(); i++) {
if(isdigit(s[i])) { v = v * 10 + s[i] - '0'; }
}
if(s[0] == '-') { v *= -1; }
return is;
}
ostream &operator<<(ostream &os, const i128 &v) {
if(v == 0) { return (os << "0"); }
i128 num = v;
if(v < 0) {
os << '-';
num = -num;
}
string s;
for(; num > 0; num /= 10) { s.push_back((char)(num % 10) + '0'); }
reverse(s.begin(), s.end());
return (os << s);
}
namespace aux {
template <typename T, unsigned N, unsigned L> struct tp {
static void output(std::ostream &os, const T &v) {
os << std::get<N>(v) << (&os == &cerr ? ", " : " ");
tp<T, N + 1, L>::output(os, v);
}
};
template <typename T, unsigned N> struct tp<T, N, N> {
static void output(std::ostream &os, const T &v) { os << std::get<N>(v); }
};
} // namespace aux
template <typename... Ts> std::ostream &operator<<(std::ostream &os, const std::tuple<Ts...> &t) {
if(&os == &cerr) { os << '('; }
aux::tp<std::tuple<Ts...>, 0, sizeof...(Ts) - 1>::output(os, t);
if(&os == &cerr) { os << ')'; }
return os;
}
template <typename T, typename S, typename U> std::ostream &operator<<(std::ostream &os, const priority_queue<T, S, U> &_pq) {
auto pq = _pq;
vector<T> res;
while(!empty(pq)) res.emplace_back(pq.top()), pq.pop();
return os << res;
}
template <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {
if(&os == &cerr) { return os << "(" << p.first << ", " << p.second << ")"; }
return os << p.first << " " << p.second;
}
template <class Ch, class Tr, class Container> std::basic_ostream<Ch, Tr> &operator<<(std::basic_ostream<Ch, Tr> &os, const Container &x) {
bool f = true;
if(&os == &cerr) os << "[";
for(auto &y : x) {
if(&os == &cerr)
os << (f ? "" : ", ") << y;
else
os << (f ? "" : " ") << y;
f = false;
}
if(&os == &cerr) os << "]";
return os;
}
#define dump(...) static_cast<void>(0)
#define dbg(...) static_cast<void>(0)
void OUT() { cout << endl; }
template <class Head, class... Tail> void OUT(const Head &head, const Tail &...tail) {
cout << head;
if(sizeof...(tail)) cout << ' ';
OUT(tail...);
}
template <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;
template <class T, class S> constexpr pair<T, S> inf<pair<T, S>> = {inf<T>, inf<S>};
template <class T> void OUT2(const T &t, T INF = inf<T>, T res = -1) { OUT(t != INF ? t : res); }
template <class T> void OUT2(vector<T> &v, T INF = inf<T>, T res = -1) {
fore(e, v) if(e == INF) e = res;
OUT(v);
fore(e, v) if(e == res) e = INF;
}
template <class F> struct REC {
F f;
REC(F &&f_) : f(forward<F>(f_)) {}
template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }
};
template <class S> vector<pair<S, int>> runLength(const vector<S> &v) {
vector<pair<S, int>> res;
for(auto &e : v) {
if(res.empty() or res.back().fi != e)
res.eb(e, 1);
else
res.back().se++;
}
return res;
}
vector<pair<char, int>> runLength(const string &v) {
vector<pair<char, int>> res;
for(auto &e : v) {
if(res.empty() or res.back().fi != e)
res.eb(e, 1);
else
res.back().se++;
}
return res;
}
struct string_converter {
char start = 0;
char type(const char &c) const { return (islower(c) ? 'a' : isupper(c) ? 'A' : isdigit(c) ? '0' : 0); }
int convert(const char &c) {
if(!start) start = type(c);
return c - start;
}
int convert(const char &c, const string &chars) { return chars.find(c); }
template <typename T> auto convert(const T &v) {
vector<decltype(convert(v[0]))> ret;
ret.reserve(size(v));
for(auto &&e : v) ret.emplace_back(convert(e));
return ret;
}
template <typename T> auto convert(const T &v, const string &chars) {
vector<decltype(convert(v[0], chars))> ret;
ret.reserve(size(v));
for(auto &&e : v) ret.emplace_back(convert(e, chars));
return ret;
}
int operator()(const char &v, char s = 0) {
start = s;
return convert(v);
}
int operator()(const char &v, const string &chars) { return convert(v, chars); }
template <typename T> auto operator()(const T &v, char s = 0) {
start = s;
return convert(v);
}
template <typename T> auto operator()(const T &v, const string &chars) { return convert(v, chars); }
} toint;
template <class T, class F> T bin_search(T ok, T ng, const F &f) {
while(abs(ok - ng) > 1) {
T mid = ok + ng >> 1;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
template <class T, class F> T bin_search_double(T ok, T ng, const F &f, int iter = 80) {
while(iter--) {
T mid = (ok + ng) / 2;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
struct Setup_io {
Setup_io() {
ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cout << fixed << setprecision(11);
}
} setup_io;
#endif
#pragma endregion
namespace modular {
constexpr int MOD = 998244353;
const int MAXN = 11000000;
template <int Modulus> class modint;
using mint = modint<MOD>;
using vmint = vector<mint>;
vector<mint> Inv;
mint inv(int x);
template <int Modulus> class modint {
public:
static constexpr int mod() { return Modulus; }
int a;
constexpr modint(const ll x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {}
constexpr int &val() noexcept { return a; }
constexpr const int &val() const noexcept { return a; }
constexpr modint operator-() const noexcept { return modint() - *this; }
constexpr modint operator+() const noexcept { return *this; }
constexpr modint &operator++() noexcept {
if(++a == MOD) a = 0;
return *this;
}
constexpr modint &operator--() noexcept {
if(!a) a = MOD;
a--;
return *this;
}
constexpr modint operator++(int) {
modint res = *this;
++*this;
return res;
}
constexpr modint operator--(int) {
mint res = *this;
--*this;
return res;
}
constexpr modint &operator+=(const modint rhs) noexcept {
a += rhs.a;
if(a >= Modulus) { a -= Modulus; }
return *this;
}
constexpr modint &operator-=(const modint rhs) noexcept {
if(a < rhs.a) { a += Modulus; }
a -= rhs.a;
return *this;
}
constexpr modint &operator*=(const modint rhs) noexcept {
a = (long long)a * rhs.a % Modulus;
return *this;
}
constexpr modint &operator/=(const modint rhs) noexcept {
a = (long long)a * (modular::inv(rhs.a)).a % Modulus;
return *this;
}
constexpr modint pow(long long n) const noexcept {
if(n < 0) {
n %= Modulus - 1;
n = (Modulus - 1) + n;
}
modint x = *this, r = 1;
while(n) {
if(n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
constexpr modint inv() const noexcept { return pow(Modulus - 2); }
constexpr friend modint operator+(const modint &lhs, const modint &rhs) { return modint(lhs) += modint(rhs); }
constexpr friend modint operator-(const modint &lhs, const modint &rhs) { return modint(lhs) -= modint(rhs); }
constexpr friend modint operator*(const modint &lhs, const modint &rhs) { return modint(lhs) *= modint(rhs); }
constexpr friend modint operator/(const modint &lhs, const modint &rhs) { return modint(lhs) /= modint(rhs); }
constexpr friend bool operator==(const modint &lhs, const modint &rhs) { return lhs.a == rhs.a; }
constexpr friend bool operator!=(const modint &lhs, const modint &rhs) { return lhs.a != rhs.a; }
// constexpr friend modint operator^=(const modint &lhs, const modint &rhs) { return modint(lhs) ^= modint(rhs); }
};
vmint Fact{1, 1}, Ifact{1, 1};
mint inv(int n) {
if(n > MAXN) return (mint(n)).pow(MOD - 2);
if(Inv.empty()) Inv.emplace_back(0), Inv.emplace_back(1);
if(Inv.size() > n)
return Inv[n];
else {
for(int i = Inv.size(); i <= n; ++i) {
auto [y, x] = div(int(MOD), i);
Inv.emplace_back(Inv[x] * (-y));
}
return Inv[n];
}
}
mint fact(int n) {
if(Fact.size() > n)
return Fact[n];
else
for(int i = Fact.size(); i <= n; ++i) Fact.emplace_back(Fact[i - 1] * i);
return Fact[n];
}
mint ifact(int n) {
if(Ifact.size() > n)
return Ifact[n];
else
for(int i = Ifact.size(); i <= n; ++i) Ifact.emplace_back(Ifact[i - 1] * inv(i));
return Ifact[n];
}
mint modpow(ll a, ll n) { return mint(a).pow(n); }
mint inv(mint a) { return inv(a.a); }
mint ifact(mint a) { return ifact(a.a); }
mint fact(mint a) { return fact(a.a); }
mint modpow(mint a, ll n) { return modpow(a.a, n); }
mint C(int a, int b) {
if(a < 0 || b < 0) return 0;
if(a < b) return 0;
if(a > MAXN) {
b = min(b, a - b);
mint res = 1;
rep(i, b) res *= a - i, res /= i + 1;
return res;
}
return fact(a) * ifact(b) * ifact(a - b);
}
mint P(int a, int b) {
if(a < 0 || b < 0) return 0;
if(a < b) return 0;
if(a > MAXN) {
mint res = 1;
rep(i, b) res *= a - i;
return res;
}
return fact(a) * ifact(a - b);
}
ostream &operator<<(ostream &os, mint a) {
os << a.a;
return os;
}
istream &operator>>(istream &is, mint &a) {
ll x;
is >> x;
a = x;
return is;
}
ostream &operator<<(ostream &os, const vmint &a) {
if(!a.empty()) {
os << a[0];
for(int i = 1; i < si(a); i++) os << " " << a[i];
}
return os;
}
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace convolution {
namespace internal {
int ceil_pow2(int n) {
int x = 0;
while((1U << x) < (unsigned int)(n)) x++;
return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if(x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if(_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if(m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while(n) {
if(n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if(n <= 1) return false;
if(n == 2 || n == 7 || n == 61) return true;
if(n % 2 == 0) return false;
long long d = n - 1;
while(d % 2 == 0) d /= 2;
for(long long a : {2, 7, 61}) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while(t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if(y != n - 1 && t % 2 == 0) { return false; }
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if(a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while(t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if(m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if(m == 2) return 1;
if(m == 167772161) return 3;
if(m == 469762049) return 3;
if(m == 754974721) return 11;
if(m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while(x % 2 == 0) x /= 2;
for(int i = 3; (long long)(i)*i <= x; i += 2) {
if(x % i == 0) {
divs[cnt++] = i;
while(x % i == 0) { x /= i; }
}
}
if(x > 1) { divs[cnt++] = x; }
for(int g = 2;; g++) {
bool ok = true;
for(int i = 0; i < cnt; i++) {
if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if(ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
void butterfly(std::vector<mint> &a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
if(first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for(int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for(int i = 0; i < cnt2 - 2; i++) {
sum_e[i] = es[i] * now;
now *= ies[i];
}
}
for(int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint now = 1;
for(int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for(int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * now;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
now *= sum_e[bsf(~(unsigned int)(s))];
}
}
}
void butterfly_inv(std::vector<mint> &a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
if(first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for(int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for(int i = 0; i < cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now;
now *= es[i];
}
}
for(int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint inow = 1;
for(int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for(int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val();
}
inow *= sum_ie[bsf(~(unsigned int)(s))];
}
}
mint z = mint(n).inv();
for(int i = 0; i < n; i++) a[i] *= z;
}
} // namespace internal
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
if(!n || !m) return {};
if(std::min(n, m) <= 60) {
if(n < m) {
std::swap(n, m);
std::swap(a, b);
}
std::vector<mint> ans(n + m - 1);
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; }
}
return ans;
}
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for(int i = 0; i < z; i++) { a[i] *= b[i]; }
internal::butterfly_inv(a);
a.resize(n + m - 1);
// mint iz = mint(z).inv();
// for(int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
} // namespace convolution
using Poly = vmint;
Poly low(const Poly &f, int s) { return Poly(f.begin(), f.begin() + min<int>(max(s, 1), f.size())); }
Poly operator-(Poly f) {
for(auto &&e : f) e = -e;
return f;
}
Poly &operator+=(Poly &l, const Poly &r) {
l.resize(max(l.size(), r.size()));
rep(i, r.size()) l[i] += r[i];
return l;
}
Poly operator+(Poly l, const Poly &r) { return l += r; }
Poly &operator-=(Poly &l, const Poly &r) {
l.resize(max(l.size(), r.size()));
rep(i, r.size()) l[i] -= r[i];
return l;
}
Poly operator-(Poly l, const Poly &r) { return l -= r; }
Poly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; }
Poly operator<<(Poly f, size_t n) { return f <<= n; }
Poly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; }
Poly operator>>(Poly f, size_t n) { return f >>= n; }
Poly operator*(const Poly &l, const Poly &r) { return convolution::convolution(l, r); }
Poly &operator*=(Poly &l, const Poly &r) { return l = l * r; }
Poly &operator*=(Poly &l, const mint &x) {
for(auto &e : l) e *= x;
return l;
}
Poly operator*(const Poly &l, const mint &x) {
auto res = l;
return res *= x;
}
Poly inv(const Poly &f, int s = -1) {
if(s == -1) s = f.size();
Poly r(s);
r[0] = mint(1) / f[0];
for(int n = 1; n < s; n *= 2) {
auto F = low(f, 2 * n);
F.resize(2 * n);
convolution::internal::butterfly(F);
auto g = low(r, 2 * n);
g.resize(2 * n);
convolution::internal::butterfly(g);
rep(i, 2 * n) F[i] *= g[i];
convolution::internal::butterfly_inv(F);
rep(i, n) F[i] = 0;
convolution::internal::butterfly(F);
rep(i, 2 * n) F[i] *= g[i];
convolution::internal::butterfly_inv(F);
rep(i, n, min(2 * n, s)) r[i] -= F[i];
}
return r;
}
Poly integ(const Poly &f) {
Poly res(f.size() + 1);
for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i;
return res;
}
Poly deriv(const Poly &f) {
if(f.size() == 0) return Poly();
Poly res(f.size() - 1);
rep(i, res.size()) res[i] = f[i + 1] * (i + 1);
return res;
}
Poly log(Poly f, int deg = -1) {
if(deg != -1) f.resize(deg + 1);
Poly g = integ(inv(f) * deriv(f));
return Poly{g.begin(), g.begin() + f.size()};
}
Poly exp(Poly f, int deg = -1) {
if(deg != -1) f.resize(deg + 1);
Poly g{1};
while(g.size() < f.size()) {
Poly x(f.begin(), f.begin() + min(f.size(), g.size() * 2));
x[0] += 1;
g.resize(2 * g.size());
x -= log(g);
x *= {g.begin(), g.begin() + g.size() / 2};
rep(i, g.size() / 2, min<int>(x.size(), g.size())) g[i] = x[i];
}
return {g.begin(), g.begin() + f.size()};
}
Poly pow(const Poly &f, ll k, int need = -1) {
const int n = (int)f.size();
if(need == -1) need = n;
int z = 0;
rep(i, n) {
if(f[i].a) break;
z++;
}
if(z * k >= need) return Poly(need);
mint rev = f[z].inv();
Poly res = exp(log((f >> z) * rev, need - k * z) * k) * f[z].pow(k);
res.resize(need - z * k);
res <<= z * k;
return res;
}
struct Prd {
deque<Poly> deq;
Prd() = default;
void emplace(const Poly &f) { deq.emplace_back(f); }
Poly calc() {
if(deq.empty()) return {1};
sort(all(deq), [&](const Poly &f, const Poly &g) { return si(f) < si(g); });
while(deq.size() > 1) {
deq.emplace_back(deq[0] * deq[1]);
for(int i = 0; i < 2; ++i) deq.pop_front();
}
return deq.front();
}
};
Poly prd(vector<Poly> &v) {
Prd p;
for(auto &e : v) p.emplace(e);
return p.calc();
}
vmint power_table(mint x, int len) {
vmint res(len + 1);
res[0] = 1;
rep(i, len) res[i + 1] = res[i] * x;
return res;
}
// calc f(x + a)
Poly TaylorShift(Poly f, mint a) {
int n = f.size();
rep(i, n) f[i] *= fact(i);
reverse(all(f));
Poly g(n, 1);
rep(i, 1, n) g[i] = g[i - 1] * a * inv(i);
f = (f * g);
f.resize(n);
reverse(begin(f), end(f));
rep(i, n) f[i] *= ifact(i);
return f;
}
// ボールの数、一個以上必要な数、入っていなくてもいい数(区別あり)
mint choose(int num, int a, int b = 0) {
if(num == 0) return !a;
return C(num + b - 1, a + b - 1);
}
} // namespace modular
using namespace modular;
using A = array<array<vmint, 2>, 2>;
int main() {
INT(n);
STR(s);
s.push_back(s[0]);
s.erase(begin(s));
dump(s);
auto res = REC([&](auto &&f, int l, int r) -> A {
if(l + 1 == r) {
A res;
rep(i, 2) rep(j, 2) {
if(s[l * 2] == "BR"[i] or s[l * 2] == '?') {
if(s[l * 2 + 1] == "PY"[j] or s[l * 2 + 1] == '?') { res[i][j] = vmint{0, 1}; }
}
}
return res;
}
int mid = l + r >> 1;
auto L = f(l, mid), R = f(mid, r);
A res;
rep(i, 2) rep(j, 2) res[i][j].resize(2);
dump(L, R);
rep(i, 2) rep(j, 2) rep(k, 2) {
vmint now = L[i][j];
rep(t, si(now)) {
if((t & 1) != k) now[t] = 0;
}
LOCAL {
if(SUM<mint>(now).a == 0) continue;
}
int I = i, J = j;
if(~k & 1) I ^= 1, J ^= 1;
dump(i, j, k, I, J);
rep(ii, 2) rep(jj, 2) {
if(SUM<mint>(R[ii][jj]).a == 0) continue;
dump(now, R[ii][jj]);
if(I == ii) {
if(J == jj) {
res[i][j] += now * (R[ii][jj] >> 1);
} else {
auto tmp = (R[ii][jj]);
REV(tmp);
auto g = now * tmp;
rep(p, si(g)) {
if(p > si(tmp) - 1) {
int idx = p - (si(tmp) - 1);
if(idx >= si(res[i][j])) res[i][j].resize(idx + 1);
res[i][j][idx] += g[p];
} else {
int idx = si(tmp) - p;
if(idx >= si(res[i][j ^ 1])) res[i][j ^ 1].resize(idx + 1);
res[i][j ^ 1][idx] += g[p];
}
}
}
} else {
if(J != jj) {
res[i][j] += now * R[ii][jj];
} else {
auto tmp = (R[ii][jj] >> 1);
REV(tmp);
auto g = now * tmp;
rep(p, si(g)) {
if(p > si(tmp) - 1) {
int idx = p - (si(tmp) - 1);
if(idx >= si(res[i][j])) res[i][j].resize(idx + 1);
res[i][j][idx] += g[p];
} else {
int idx = si(tmp) - p;
if(idx >= si(res[i][j ^ 1])) res[i][j ^ 1].resize(idx + 1);
res[i][j ^ 1][idx] += g[p];
}
}
}
}
dump(ii, jj);
dump(res);
}
}
dump(l, r);
dump(res);
return res;
})(0, n);
mint ans;
rep(i, 2) rep(j, 2) ans += res[i][j][1];
OUT(ans);
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 3964kb
input:
2 ????
output:
12
result:
ok 1 number(s): "12"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3732kb
input:
3 ??YR?B
output:
4
result:
ok 1 number(s): "4"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3704kb
input:
5 YBYRPBYRYB
output:
0
result:
ok 1 number(s): "0"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3676kb
input:
10 PRPBPRPRPRPBYB?R?BY?
output:
3
result:
ok 1 number(s): "3"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3616kb
input:
10 ?R?R?BYB?R?R?B?B?BYR
output:
96
result:
ok 1 number(s): "96"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3732kb
input:
10 YRPRYRY???P?YB?BYRY?
output:
32
result:
ok 1 number(s): "32"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3728kb
input:
10 PBYBPRPBYRPBYRYBPRPB
output:
0
result:
ok 1 number(s): "0"
Test #8:
score: 0
Accepted
time: 0ms
memory: 3728kb
input:
10 PBPRPRYBYRYRYB?B?RYB
output:
0
result:
ok 1 number(s): "0"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3668kb
input:
10 PRP?PBPRYR??Y?YRPB?R
output:
12
result:
ok 1 number(s): "12"
Test #10:
score: 0
Accepted
time: 1ms
memory: 3724kb
input:
10 ?RYB??P??B?B?B???RPR
output:
416
result:
ok 1 number(s): "416"
Test #11:
score: 0
Accepted
time: 101ms
memory: 4184kb
input:
50000 YBPBYRPRPRPRPBPRPBPBPBYRPRPBPBYRPBPRYBYBPBPBPRPBPBYRYBYRPBYRYRPBYRYRYRPBYBYRPBPBYBYBPBYRPBPBYBYBYRPBPRYBPBYBPRPRYBPRPBYBPRPBYRPBYBPRYBPBPBYRYBYBYBPRYBYRPRPRPRPRYRYBPBPBPBPRPRYBYRYBPRPRPRPBYBPBPRYRPRPBYRPBYRYRPBYBYBPBYRYRPBPRYBPRYBPBPBYRPBPBYBYBPRPBYBYBYRYRPBPRPRPRPRPRYBPBPBPRYBYRPRPRYBYRPRPBYR...
output:
0
result:
ok 1 number(s): "0"
Test #12:
score: 0
Accepted
time: 104ms
memory: 4196kb
input:
50000 YRPBPBYRYRYRYBYBYRPBPBPBPBPBYRYBPBPRYBPBYRYRPRYBYBYBYRPRPBPBPRYRPBYBYBPBYRYRPRPBPBPBPRYBYBYRYRPRPRYBPRPBYRPBPRYRPRYBPRYBYBYRYRYBYRYRYBYRPBPBPBYBPBPRPBPRYRPRYBYBPBPRPBPBPRPRPBYRYRPBPBPBYRPBYBYBYRPBPRPBPRYBPRPRYBPRPBPBYRYRYRYBYRPRPRYBYBYBPBPRPBPRYRYRPRPRPBPBPRPRPBYBYRPRPRPBYBYRPBYBPRPRPRPRPRPBPB...
output:
0
result:
ok 1 number(s): "0"
Test #13:
score: 0
Accepted
time: 100ms
memory: 4404kb
input:
50000 PRPRYBPBYBYBPBYRPBYRYBPBPBPRPRPBYBYRPRPRPRPRPRYRYBYRPBPBPRYRPRPBPRPBPRPRPRPBYRYRYRPBYBYRYRPRPRPRPRYBYBYBYBPBPRPBPBPRYRPRYRPRPRYRPRPBPBYRYBPRPRYRPBPBYBYBPBYRPBPRYRPRYRYBPBPBPRPBPRPRPRYBPBPBYBYBPRYRPRYRPBYRYBYRYRPBYBPBPRPRYRPRYBYRPRPRYBYBYBPBYRYRYRYRYRYRPBYBYRYRYBYRPRYRPBPBYBYRYBPBYBPRYBPBYRYBPR...
output:
0
result:
ok 1 number(s): "0"
Test #14:
score: 0
Accepted
time: 102ms
memory: 4204kb
input:
50000 YRPRPBPRYRYRPRYBPBYRPRPBYRYRYRPBPBYRPRYBYBYBPRYRPBPRPBPBYRPRPRPBPBYBYBPRPRPRYRYRYBYRPBYBPBPRYBPRYBYBYBPBYBYBPBPBPRYRPRPBYRYBYRPRYBYRPRYRPRPRYRPBYRYRYBYRYRPRYRYRPBPRPBYRYRPBYRPBPBPBPRPBYBYBPRYBPBPBYRYRYBYRPRPBPRYBPRPBYRPBYBYBPBPRPBYRYRPRPBPRPBPBYRPRPBYRPRPRYRYRPBYBYBPBPBYBPBYBYRYBYRPBPBPBPRYRPB...
output:
0
result:
ok 1 number(s): "0"
Test #15:
score: 0
Accepted
time: 105ms
memory: 4184kb
input:
50000 YBPBYRPRYRPRPBPBYBYRPBYRPBPRPRPBPBPBYRYBYRPBYRYRPBYRPRPRYBPRYRYBYBPRPRYBYBPRPRPRYRPRYBPRPBYRPBYRPBYRPRPBPBPRPBPBYRYBPRPBPBPBPBYRYRPRPRYBYRPRYBYBYBYBYRYRPBPRYRYRPRYBPRPBPRPRPRPRPBPRPBYBPBPBPBYRPBYBPBPRPBYRPRPRYRYBYRPRPBPRYBYRPBPRPBPRYRPRYBYRYBYBPRPRPRPBYRPBPBYRYRPBPRYBPRYBPRYBPRYBYRPBYBPBPBYRPR...
output:
0
result:
ok 1 number(s): "0"
Test #16:
score: 0
Accepted
time: 34ms
memory: 4292kb
input:
5000 PR?BPB?BY?PRY??RPB?R??YBY?P?YRPBYBPRP?YBYBYRPRPB?BPBPR?RYR??Y??RYR?BPRYR?RPRP?Y?PRY?Y?YB??PBYRYR?RPB?BPB?BY?P?Y?YBY??RPB?BPRPBY???PRP?YB?R?RP?PR?BPB???R?B?RP?PBYB?BPRYBP?P??B?RPRP???P???PRYB?RYRP?Y??RPR?BP?PR?BPBPRYR?B??PB??YBPB?B?BY?YB?RY?PR?RYB???BYBP?Y??RYRYB?RYBYBPBYRYBP?YBYR?RPBYBY?YRP??R?...
output:
101508706
result:
ok 1 number(s): "101508706"
Test #17:
score: 0
Accepted
time: 40ms
memory: 4280kb
input:
5000 Y?P?PBYBYBPBYB?RYBPRPB?B??YRY??RP?PB??P??BYR?B?BP??R?R?R?BYBP??BY?Y?PBY?Y?YR?RY?PRPR?R?RPR?RPR?BYR?B?B?RPRPR?RP?Y?YRP?Y??RYB????YRY?YR?BP?YB?B??Y??B?RPBYR?RP????B?RPR??????P?PRPR?RP?PR?????BP?P?YB?BYRP?PBP?YBYB?RPR?R?B?BYRYR?RPBPBY??BYBPRYRPBPB?R?RPR?BYBP?YRY?PR?BPR?RY????BYBYB?RYRP???Y???PBY?Y...
output:
748282195
result:
ok 1 number(s): "748282195"
Test #18:
score: 0
Accepted
time: 43ms
memory: 4076kb
input:
5000 P?PRPRPBP??RYB??YBPBYRYB?BP?YB?B?BY??R?BYRP??BPRY?YBYB?RY????B??????PB?RP?P??R?BPB?BY?PR?RPBPBPR?BY?YB?BYBYRYBYRYBY?Y??RP?YR?R?R?BY?PBY??RYBPBYBYBY?PBY?P?YB?RYR???RY?YBY?YRYRY?PBY?P?PBYRPRY?PBP???PBYRPRY?Y?P?P?Y?PR???B?B?RP???PBY?P?PR???BP?PR????P?YB??YR??YRYBYR?B?BP??BPB??P?Y?PRYRY?YB??YR?RY?Y...
output:
24097861
result:
ok 1 number(s): "24097861"
Test #19:
score: 0
Accepted
time: 36ms
memory: 3988kb
input:
5000 ??PBPRYBPR??PRP?PRYBY???P?YRPBYBY?YR?RYR??Y?P?YRPR?BPBY?PRPRYB?RYBY?P?????YBPBYBY?Y??BY?PB???BP?P?Y???YR??YBP???YRYB?BPBPRP???PRY??B???BPB???R?RP?PB???BYRP?YB?BP??RP?PBYRPRPR??P??RY????B?????RP?YBYBPRYBYB?RYRYBP??RPB??YRPBY?PBPBP?YRYBPR?BPRYBPB???BYR?RY?PB?RYRY??BYRP?Y?YRP?PRPR????Y?PRPRYBP?YBP...
output:
447561693
result:
ok 1 number(s): "447561693"
Test #20:
score: 0
Accepted
time: 40ms
memory: 4236kb
input:
5000 P?P?P??????BPR?RY?PR??Y?Y??BPR??PB?B??PRP?YB???RPRPRPBY??R??PRYBYR?RPR?BP??R?B?RYRPRP??B?BYRY??R?RP???P?PRP??RY??RY?YBY???????P?Y?PBPRYBPRYRY?P?PB?BPR??P?Y?Y?Y?PR?RPB??Y??BYRP?PRPRY??R?RYBPR??YBP??B?RPRYBPR?BP??BYBYBPRYRPBPRPRY?Y?YBYRPBP?PB??Y?P??????R?BPBYR???BPR?B?R???BYR?BP?P?Y?YRY?PR??YBYB?...
output:
987042679
result:
ok 1 number(s): "987042679"
Test #21:
score: 0
Accepted
time: 10ms
memory: 3848kb
input:
5000 PRPBPRPRYRPRPBYBPBPBYRPBPBPBYRYRYBPBYRPRYBPBPRYBPBYRPRYBYRYRPBPBPBPBYRPBYRYBYRPRYBPBPBPRYBPRYBYBPRPBPBYRYBPRPBYRYRPRYBPRPRPBYRPBYRYRPRPRYRYRYBYBPBPBPBPRPRPBPRPRYRPBYRYRYRPBPRPRYRPRPBYBYBPBPRPRYRPBPRYBPRYBPRPRYRPRYRPBPRYBPRPRYBYRPBYRPRYBPRPRYBYRPRYRYBPRYBPRPBPRPRPRYBYRYRYRYRPBPRPBPRPBPRPBPRYRYBY...
output:
0
result:
ok 1 number(s): "0"
Test #22:
score: 0
Accepted
time: 10ms
memory: 3848kb
input:
5000 PRYRYBPBPRYRYRYRPBPBYBYRPBPBYRPRPRYBYRPRYRPBPRYBPBYRPRYRYRYBPBPBYBPBYBPBYRYRYRYRYBYRPRPBYRYBPRYBYBPRPRPBYRYRYRPBYBPBPRPRYRPRPBPRYBYBPBPBYBPBPBPRPBYRYRYRYRPRYBYBPBYBYBPBYBYRPRYRPRPRYBYRYBYRYRYBYBYRPBPRYRYRPRPRPRPRYRPRYRYRPBYBYRPBYBPBPRYBPBYBPBPRYRYRPBPRPRPBPRYRPRYBPBYRPRYBPBYRYBPRPRYRYBYBPRPBYBP...
output:
0
result:
ok 1 number(s): "0"
Test #23:
score: 0
Accepted
time: 11ms
memory: 3828kb
input:
5000 PBYRYRYBYBPBYBYBPBYBYRPRYBYRPRPBYRYBPRYBPRPRYRYRPBYRYRPRYRYBPBYBPBPRPBPRPBPBP?YRPBYBYBPRPRPBPRYRPRYBPRYRYBYRPRYBYBPBYRPBPBYBYRYBPRPBYRYBPBYBYRYRYRPRPRYBYBPRYRPRYBYBYBPRYBPBYRYBPBPRPRPBYBYRYBYRPRYBYBYBYBYBPBYRPRPRPRPRYBYRPRYRYRYBYRPBYRPBPRPRYBPBYBYRPRYBPRYBPRPRPRPBYRPRPBYRYBY?PRYRYRYBPRYRYBYRYBY...
output:
172032
result:
ok 1 number(s): "172032"
Test #24:
score: 0
Accepted
time: 77ms
memory: 4000kb
input:
5000 ????YRPB??PB??Y?Y??R??P?PRY?P??B??PBPBP???PRP??RY??RP?YRYB?R?BY?P??B?B??Y??R?RYRYRP???P?YBPR?R????YBP???P????R?R?BPR??Y?Y?YBP?Y??RY???PR??????P?P?Y??B?R?????B??Y?Y??BY??B?B???RYR???R?RY??RP?PR?RY?PB??Y?P?P???P??B?R??YR?BYRY??????R??Y??RYRPBYR??Y?P?P??B?RP?Y??B?BPBP?P???Y??B?RY?YBYB?RYRYRYBYB???...
output:
589400951
result:
ok 1 number(s): "589400951"
Test #25:
score: 0
Accepted
time: 93ms
memory: 3948kb
input:
5000 ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????...
output:
312356960
result:
ok 1 number(s): "312356960"
Test #26:
score: 0
Accepted
time: 813ms
memory: 6496kb
input:
50000 YR?BPR?BP??B??YBY?PRY?PRYB??PB?BPBY??R???RPR??Y?Y???PR???BPBPRPRY?Y?P?Y?P?YR??YR?RP?YRP??B?B???R??YR?BPR?B?R?R??Y?YBYRPR?BPBPRPRPB??YBPR??PR??Y??RYBY??RPRPB??YBPR??PBY?PBPBPRPRPRYRYB??YR?BYRP?P??RYR?R?R?RPBP?Y?YR??YBYR??YRYR???BPRPR???BP??B?BPBYBYBYR?B?RPRPBP?P?YBPB?R?BPBPR?BP?PRYRPB?BY?Y??B?B...
output:
61578469
result:
ok 1 number(s): "61578469"
Test #27:
score: 0
Accepted
time: 774ms
memory: 6356kb
input:
50000 Y??RPRP?PBYR?BPRPBYB??YBP?PBPB?????B?BYRYBPBYBPRPRYBP?P?YB?B??PBY?PB?R?RPR?RYBY?Y?PBY????B??YBYRPRY??BYR??PRPBP?P?P?Y?YBPRPBYBPRP???Y?P??RPBYBPBY??BY?Y?YRPB??Y?PBYB??P?Y?PRYBY?YBY??R?B??PR???BYRYB?RPBPBPBPR?RP??BYRYB?BP?PRP?P?YBPRP?PBYR???R?RPBP?P?YB?RPR?RYRP??B?RYRYRYBP??B???BYRYRPB??YRPRYBPB...
output:
21239954
result:
ok 1 number(s): "21239954"
Test #28:
score: 0
Accepted
time: 780ms
memory: 6348kb
input:
50000 YR??PB?BP???YRP??BYRPRP?P?PRPRPR?RPRPBYBPBY??B?B?RPRPBYRP??R?B??PR??P?PR?RYBPRPRY????R?R?RY??B?RYB?R?B?BYBPB??YRYRYBY?P?PR?B?RP??RP?YRPRYBPBYB?BYBP????RYRYR?BPRP?YRY?PB???BP??????BPR?RP?YBPB?RY?PBPBP??BYRP?YBYRP?YBYB?RPRYBYBP?YBY?YB?R??PBYBY?PB?R????P??BPRPRPRY???P???PBPRYRYB?RP?YBYRYRY????RP?...
output:
268137953
result:
ok 1 number(s): "268137953"
Test #29:
score: 0
Accepted
time: 790ms
memory: 6296kb
input:
50000 P???PR?RYBPB?RPBYB??YR??PB??YBPBP?Y?P??R?RYBPRPBYB??YB?R????YR?RPRPB?RYB?RPRP???PBYBY?YB?BYR??PR?B???B?R?RPR?RPR??PR?BYBPR????P???P?YRPR??P?PRYRYB?BYBY???P?PB?R??P??RYBPB?R?RYB???B????PRPRYR???BYRYR?B??PBP???PRP?P?YR??YRP??B?BY?Y?PRPRPRYRYRYRPRY?Y??RPBY?YR?BPRPB?R?BYR?BY??BY?P?Y?YBYRYBYRY?P??R...
output:
903429393
result:
ok 1 number(s): "903429393"
Test #30:
score: 0
Accepted
time: 760ms
memory: 6428kb
input:
50000 P??RPBYB?RP?Y??BPBPBPBYRPRPBYRP?YR??P?PBY?Y?????PRYBPBP?Y??BY??BPR?BYB???R?B??YBYRP??BP?YBPRP?YBP?P?Y?PR??YRPBYBPR?BPBY?PRY??RP???PRYBP?YRP?P??R??P?YBPR??P?PRYB?BPRYRYBP??BYB?RP??RPB??PR?R??YBPR?B??YBY?Y???P??BYRP????RYB?RYR?BP?YBP?P???P?PB??PR?RP?PR?R??P?YB?B??P?YRY?Y??RY?P?YBYBYRYRY?YRPBYBYB...
output:
360140728
result:
ok 1 number(s): "360140728"
Test #31:
score: 0
Accepted
time: 101ms
memory: 4224kb
input:
50000 PBYRYRYBYRYBYRPBYRPBPBYBYRYBYBPRPBYRYRYBYRPBPRYBYRYRYRYBYRYRYRPRYBYRPRPRPRYRPBYRPRPBYRPBYRYRPBYRYBPRYRPRYBYBYRYBPRPBYBPRPRPRYRPRYRPRYRPBYBPRPRYRYRPRPRPBYRYRYRPRPBPRPRYRYRYBYRYRYRPBYBYRPBPBYRPRPBPRYBPRPBYBPBPBPBYRYRPRPBYRPBYRYBPRPBYRYBPBPRPRPBYBPRYRPBYBYBYRPRYBYBYBPBYBPBPRYRYRYRPRYBYBYBPBPBYBPR...
output:
0
result:
ok 1 number(s): "0"
Test #32:
score: 0
Accepted
time: 105ms
memory: 4384kb
input:
50000 PRYRPBPRYRYBYRYBYRYRYRPRPBPRPRYBYBPBYRPRYRYRYRYRPBYBPRPRPRPRPRPRYBPRPBYBPBYBYBYRPRPBYBYBYBYBPRPBYBPBPRYRYBYBPBYRYBYRPBYRYRYRYBYBYRYBYRPRPBPBPBPBPBPRPRYBYRYRPBPRPRYBYRPRYRYRYRYRPRPRYRPBPRYRYRPBYBPRPBYRYRYBYRYBPRYBYRYRPRYBYBPRPBYRPBYBYRYRYRYBPBPRPBYBPBYRYBYRPBPBYBPRYBYRYBPBYRYRPBYBPBYBPRPBYBYRYB...
output:
0
result:
ok 1 number(s): "0"
Test #33:
score: 0
Accepted
time: 104ms
memory: 4216kb
input:
50000 PBPRPBYRPRYBYBYRPBPBYRPBPRPBPBPBYRPBYBYRPRYBPRPRYRYBPBPBYRPRYRYRPBYRYRPBPBYRPBPBYRPBYRYBYRYBYBYRYBPRPBYRYRYRPBYRPBYBPRYRYBPRYBYBYRPBPRYRYRYBYRPBPBPBPBPRYBYRPBYBYRYRYBYRYRYBYRPRYRPBYRPBPRYBYRPBPBYRYRPRYRYRYBPBYRPRPRPBPRPRYRPBPBYBPBPBYBYBYBPBYBPRPBYBYRPRPBYBPRPBPRPBYRPBPRYRPRYRYRYBPRPRPRYRPBYBPR...
output:
0
result:
ok 1 number(s): "0"
Test #34:
score: 0
Accepted
time: 912ms
memory: 6824kb
input:
50000 ?BY???P????RPB??P???YB?R?BY?YR????PR??P???????P?YRP?PRY?PB??Y?YR???B??Y?YR?BPRYR?B?B?BPRY?Y???PRY?PBYBPRP?Y?PBY?YRP?PR?R??PRYRY?Y?Y?Y?P?PBPB?RP?PRY?P???PRY???P???P???PB?B?B?B?B?BYBP?PR????P??BYRY??????R?B??P?????PBY??R?B??Y?YB??PBPB?B???R?BP??B?BPB?R????YR????YBP?P?YR????Y?PRPB??Y????R?R?RY??B...
output:
908700788
result:
ok 1 number(s): "908700788"
Test #35:
score: 0
Accepted
time: 1210ms
memory: 6504kb
input:
50000 ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????...
output:
422064317
result:
ok 1 number(s): "422064317"