QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#205535#7559. Bocchi the Rockucup-team987#AC ✓1727ms14148kbC++2326.7kb2023-10-07 16:26:112023-10-07 16:26:11

Judging History

你现在查看的是最新测评结果

  • [2023-10-07 16:26:11]
  • 评测
  • 测评结果:AC
  • 用时:1727ms
  • 内存:14148kb
  • [2023-10-07 16:26:11]
  • 提交

answer

#if __INCLUDE_LEVEL__ == 0

#include __BASE_FILE__

namespace {

using Fp = atcoder::modint998244353;

void solve() {
  int n;
  cin >> n;
  vector<int> a(n * 2);
  for (int& e : a) {
    char c;
    cin >> c;
    if (c == 'Y' || c == 'R') {
      e = 1;
    }
    if (c == 'P' || c == 'B') {
      e = -1;
    }
  }
  constexpr array pw{1, -1};
  auto f = fix([&](auto self, int l, int r) -> array<array<vector<Fp>, 2>, 2> {
    array<array<vector<Fp>, 2>, 2> ret;
    for (int i : rep(2)) {
      for (int j : rep(2)) {
        ret[i][j].resize((r - l) * 4 - 1);
      }
    }
    if (l + 1 == r) {
      for (int i : rep(2)) {
        for (int j : rep(2)) {
          if (a[l * 2] != pw[i ^ 1] && a[l * 2 + 1] != pw[j ^ 1]) {
            if (i ^ j) {
              ret[i][j][0] += 1;
            } else {
              ret[i][j][2] += 1;
            }
          }
        }
      }
      return ret;
    }
    int m = midpoint(l, r);
    auto f = self(l, m);
    auto g = self(m, r);
    for (int fi : rep(2)) {
      for (int fj : rep(2)) {
        for (int gi : rep(2)) {
          for (int gj : rep(2)) {
            auto tmp = atcoder::convolution(f[fi][fj], g[gi][gj]);
            if (fj ^ gi) {
              for (int i : rep(len(tmp))) {
                ret[fi][gj][i + 2] += tmp[i];
              }
            } else {
              for (int i : rep(len(tmp))) {
                ret[fi][gj][i] += tmp[i];
              }
            }
          }
        }
      }
    }
    return ret;
  })(0, n);
  Fp ans = 0;
  for (int i : rep(2)) {
    for (int j : rep(2)) {
      if (i ^ j) {
        ans += f[i][j][n * 2 - 2];
      } else {
        ans += f[i][j][n * 2];
      }
    }
  }
  print(ans);
}

}  // namespace

int main() {
  ios::sync_with_stdio(false);
  cin.tie(nullptr);

  solve();
}

#else  // __INCLUDE_LEVEL__

#include <bits/stdc++.h>

using namespace std;

namespace atcoder {

namespace internal {

using std::bit_ceil;

int countr_zero(unsigned int n) { return __builtin_ctz(n); }

constexpr int countr_zero_constexpr(unsigned int n) {
  int x = 0;
  while (!(n & (1 << x))) x++;
  return x;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
  x %= m;
  if (x < 0) x += m;
  return x;
}

struct barrett {
  unsigned int _m;
  unsigned long long im;

  explicit barrett(unsigned int m)
      : _m(m), im((unsigned long long)(-1) / m + 1) {}

  unsigned int umod() const { return _m; }

  unsigned int mul(unsigned int a, unsigned int b) const {
    unsigned long long z = a;
    z *= b;
    unsigned long long x =
        (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
    unsigned long long y = x * _m;
    return (unsigned int)(z - y + (z < y ? _m : 0));
  }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
  if (m == 1) return 0;
  unsigned int _m = (unsigned int)(m);
  unsigned long long r = 1;
  unsigned long long y = safe_mod(x, m);
  while (n) {
    if (n & 1) r = (r * y) % _m;
    y = (y * y) % _m;
    n >>= 1;
  }
  return r;
}

constexpr bool is_prime_constexpr(int n) {
  if (n <= 1) return false;
  if (n == 2 || n == 7 || n == 61) return true;
  if (n % 2 == 0) return false;
  long long d = n - 1;
  while (d % 2 == 0) d /= 2;
  constexpr long long bases[3] = {2, 7, 61};
  for (long long a : bases) {
    long long t = d;
    long long y = pow_mod_constexpr(a, t, n);
    while (t != n - 1 && y != 1 && y != n - 1) {
      y = y * y % n;
      t <<= 1;
    }
    if (y != n - 1 && t % 2 == 0) {
      return false;
    }
  }
  return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
  a = safe_mod(a, b);
  if (a == 0) return {b, 0};

  long long s = b, t = a;
  long long m0 = 0, m1 = 1;

  while (t) {
    long long u = s / t;
    s -= t * u;
    m0 -= m1 * u;

    auto tmp = s;
    s = t;
    t = tmp;
    tmp = m0;
    m0 = m1;
    m1 = tmp;
  }
  if (m0 < 0) m0 += b / s;
  return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
  if (m == 2) return 1;
  if (m == 167772161) return 3;
  if (m == 469762049) return 3;
  if (m == 754974721) return 11;
  if (m == 998244353) return 3;
  int divs[20] = {};
  divs[0] = 2;
  int cnt = 1;
  int x = (m - 1) / 2;
  while (x % 2 == 0) x /= 2;
  for (int i = 3; (long long)(i)*i <= x; i += 2) {
    if (x % i == 0) {
      divs[cnt++] = i;
      while (x % i == 0) {
        x /= i;
      }
    }
  }
  if (x > 1) {
    divs[cnt++] = x;
  }
  for (int g = 2;; g++) {
    bool ok = true;
    for (int i = 0; i < cnt; i++) {
      if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
        ok = false;
        break;
      }
    }
    if (ok) return g;
  }
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
  unsigned long long ans = 0;
  while (true) {
    if (a >= m) {
      ans += n * (n - 1) / 2 * (a / m);
      a %= m;
    }
    if (b >= m) {
      ans += n * (b / m);
      b %= m;
    }

    unsigned long long y_max = a * n + b;
    if (y_max < m) break;
    n = (unsigned long long)(y_max / m);
    b = (unsigned long long)(y_max % m);
    std::swap(m, a);
  }
  return ans;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral =
    typename std::conditional<std::is_integral<T>::value ||
                                  is_signed_int128<T>::value ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_signed_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_signed<T>::value) ||
                                  is_signed_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value, make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
  using mint = static_modint;

 public:
  static constexpr int mod() { return m; }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }

  static_modint() : _v(0) {}
  template <class T, internal::is_signed_int_t<T>* = nullptr>
  static_modint(T v) {
    long long x = (long long)(v % (long long)(umod()));
    if (x < 0) x += umod();
    _v = (unsigned int)(x);
  }
  template <class T, internal::is_unsigned_int_t<T>* = nullptr>
  static_modint(T v) {
    _v = (unsigned int)(v % umod());
  }

  unsigned int val() const { return _v; }

  mint& operator++() {
    _v++;
    if (_v == umod()) _v = 0;
    return *this;
  }
  mint& operator--() {
    if (_v == 0) _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }

  mint& operator+=(const mint& rhs) {
    _v += rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator-=(const mint& rhs) {
    _v -= rhs._v;
    if (_v >= umod()) _v += umod();
    return *this;
  }
  mint& operator*=(const mint& rhs) {
    unsigned long long z = _v;
    z *= rhs._v;
    _v = (unsigned int)(z % umod());
    return *this;
  }
  mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }

  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    if (prime) {
      assert(_v);
      return pow(umod() - 2);
    } else {
      auto eg = internal::inv_gcd(_v, m);
      assert(eg.first == 1);
      return eg.second;
    }
  }

  friend mint operator+(const mint& lhs, const mint& rhs) {
    return mint(lhs) += rhs;
  }
  friend mint operator-(const mint& lhs, const mint& rhs) {
    return mint(lhs) -= rhs;
  }
  friend mint operator*(const mint& lhs, const mint& rhs) {
    return mint(lhs) *= rhs;
  }
  friend mint operator/(const mint& lhs, const mint& rhs) {
    return mint(lhs) /= rhs;
  }
  friend bool operator==(const mint& lhs, const mint& rhs) {
    return lhs._v == rhs._v;
  }
  friend bool operator!=(const mint& lhs, const mint& rhs) {
    return lhs._v != rhs._v;
  }

 private:
  unsigned int _v;
  static constexpr unsigned int umod() { return m; }
  static constexpr bool prime = internal::is_prime<m>;
};

template <int id>
struct dynamic_modint : internal::modint_base {
  using mint = dynamic_modint;

 public:
  static int mod() { return (int)(bt.umod()); }
  static void set_mod(int m) {
    assert(1 <= m);
    bt = internal::barrett(m);
  }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }

  dynamic_modint() : _v(0) {}
  template <class T, internal::is_signed_int_t<T>* = nullptr>
  dynamic_modint(T v) {
    long long x = (long long)(v % (long long)(mod()));
    if (x < 0) x += mod();
    _v = (unsigned int)(x);
  }
  template <class T, internal::is_unsigned_int_t<T>* = nullptr>
  dynamic_modint(T v) {
    _v = (unsigned int)(v % mod());
  }

  unsigned int val() const { return _v; }

  mint& operator++() {
    _v++;
    if (_v == umod()) _v = 0;
    return *this;
  }
  mint& operator--() {
    if (_v == 0) _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }

  mint& operator+=(const mint& rhs) {
    _v += rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator-=(const mint& rhs) {
    _v += mod() - rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator*=(const mint& rhs) {
    _v = bt.mul(_v, rhs._v);
    return *this;
  }
  mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }

  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    auto eg = internal::inv_gcd(_v, mod());
    assert(eg.first == 1);
    return eg.second;
  }

  friend mint operator+(const mint& lhs, const mint& rhs) {
    return mint(lhs) += rhs;
  }
  friend mint operator-(const mint& lhs, const mint& rhs) {
    return mint(lhs) -= rhs;
  }
  friend mint operator*(const mint& lhs, const mint& rhs) {
    return mint(lhs) *= rhs;
  }
  friend mint operator/(const mint& lhs, const mint& rhs) {
    return mint(lhs) /= rhs;
  }
  friend bool operator==(const mint& lhs, const mint& rhs) {
    return lhs._v == rhs._v;
  }
  friend bool operator!=(const mint& lhs, const mint& rhs) {
    return lhs._v != rhs._v;
  }

 private:
  unsigned int _v;
  static internal::barrett bt;
  static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

template <class mint, int g = internal::primitive_root<mint::mod()>,
          internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
  static constexpr int rank2 = countr_zero_constexpr(mint::mod() - 1);
  std::array<mint, rank2 + 1> root;
  std::array<mint, rank2 + 1> iroot;

  std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
  std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;

  std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
  std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;

  fft_info() {
    root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
    iroot[rank2] = root[rank2].inv();
    for (int i = rank2 - 1; i >= 0; i--) {
      root[i] = root[i + 1] * root[i + 1];
      iroot[i] = iroot[i + 1] * iroot[i + 1];
    }

    {
      mint prod = 1, iprod = 1;
      for (int i = 0; i <= rank2 - 2; i++) {
        rate2[i] = root[i + 2] * prod;
        irate2[i] = iroot[i + 2] * iprod;
        prod *= iroot[i + 2];
        iprod *= root[i + 2];
      }
    }
    {
      mint prod = 1, iprod = 1;
      for (int i = 0; i <= rank2 - 3; i++) {
        rate3[i] = root[i + 3] * prod;
        irate3[i] = iroot[i + 3] * iprod;
        prod *= iroot[i + 3];
        iprod *= root[i + 3];
      }
    }
  }
};

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
  int n = int(a.size());
  int h = internal::countr_zero((unsigned int)n);

  static const fft_info<mint> info;

  int len = 0;
  while (len < h) {
    if (h - len == 1) {
      int p = 1 << (h - len - 1);
      mint rot = 1;
      for (int s = 0; s < (1 << len); s++) {
        int offset = s << (h - len);
        for (int i = 0; i < p; i++) {
          auto l = a[i + offset];
          auto r = a[i + offset + p] * rot;
          a[i + offset] = l + r;
          a[i + offset + p] = l - r;
        }
        if (s + 1 != (1 << len))
          rot *= info.rate2[countr_zero(~(unsigned int)(s))];
      }
      len++;
    } else {
      int p = 1 << (h - len - 2);
      mint rot = 1, imag = info.root[2];
      for (int s = 0; s < (1 << len); s++) {
        mint rot2 = rot * rot;
        mint rot3 = rot2 * rot;
        int offset = s << (h - len);
        for (int i = 0; i < p; i++) {
          auto mod2 = 1ULL * mint::mod() * mint::mod();
          auto a0 = 1ULL * a[i + offset].val();
          auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
          auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
          auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
          auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val();
          auto na2 = mod2 - a2;
          a[i + offset] = a0 + a2 + a1 + a3;
          a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
          a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
          a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
        }
        if (s + 1 != (1 << len))
          rot *= info.rate3[countr_zero(~(unsigned int)(s))];
      }
      len += 2;
    }
  }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
  int n = int(a.size());
  int h = internal::countr_zero((unsigned int)n);

  static const fft_info<mint> info;

  int len = h;
  while (len) {
    if (len == 1) {
      int p = 1 << (h - len);
      mint irot = 1;
      for (int s = 0; s < (1 << (len - 1)); s++) {
        int offset = s << (h - len + 1);
        for (int i = 0; i < p; i++) {
          auto l = a[i + offset];
          auto r = a[i + offset + p];
          a[i + offset] = l + r;
          a[i + offset + p] =
              (unsigned long long)(mint::mod() + l.val() - r.val()) *
              irot.val();
          ;
        }
        if (s + 1 != (1 << (len - 1)))
          irot *= info.irate2[countr_zero(~(unsigned int)(s))];
      }
      len--;
    } else {
      int p = 1 << (h - len);
      mint irot = 1, iimag = info.iroot[2];
      for (int s = 0; s < (1 << (len - 2)); s++) {
        mint irot2 = irot * irot;
        mint irot3 = irot2 * irot;
        int offset = s << (h - len + 2);
        for (int i = 0; i < p; i++) {
          auto a0 = 1ULL * a[i + offset + 0 * p].val();
          auto a1 = 1ULL * a[i + offset + 1 * p].val();
          auto a2 = 1ULL * a[i + offset + 2 * p].val();
          auto a3 = 1ULL * a[i + offset + 3 * p].val();

          auto a2na3iimag =
              1ULL * mint((mint::mod() + a2 - a3) * iimag.val()).val();

          a[i + offset] = a0 + a1 + a2 + a3;
          a[i + offset + 1 * p] =
              (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
          a[i + offset + 2 * p] =
              (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) * irot2.val();
          a[i + offset + 3 * p] =
              (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
              irot3.val();
        }
        if (s + 1 != (1 << (len - 2)))
          irot *= info.irate3[countr_zero(~(unsigned int)(s))];
      }
      len -= 2;
    }
  }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
                                    const std::vector<mint>& b) {
  int n = int(a.size()), m = int(b.size());
  std::vector<mint> ans(n + m - 1);
  if (n < m) {
    for (int j = 0; j < m; j++) {
      for (int i = 0; i < n; i++) {
        ans[i + j] += a[i] * b[j];
      }
    }
  } else {
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        ans[i + j] += a[i] * b[j];
      }
    }
  }
  return ans;
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
  int n = int(a.size()), m = int(b.size());
  int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
  a.resize(z);
  internal::butterfly(a);
  b.resize(z);
  internal::butterfly(b);
  for (int i = 0; i < z; i++) {
    a[i] *= b[i];
  }
  internal::butterfly_inv(a);
  a.resize(n + m - 1);
  mint iz = mint(z).inv();
  for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
  return a;
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
  int n = int(a.size()), m = int(b.size());
  if (!n || !m) return {};

  int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
  assert((mint::mod() - 1) % z == 0);

  if (std::min(n, m) <= 60) return convolution_naive(a, b);
  return internal::convolution_fft(a, b);
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
                              const std::vector<mint>& b) {
  int n = int(a.size()), m = int(b.size());
  if (!n || !m) return {};

  int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
  assert((mint::mod() - 1) % z == 0);

  if (std::min(n, m) <= 60) return convolution_naive(a, b);
  return internal::convolution_fft(a, b);
}

template <unsigned int mod = 998244353, class T,
          std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
  int n = int(a.size()), m = int(b.size());
  if (!n || !m) return {};

  using mint = static_modint<mod>;

  int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
  assert((mint::mod() - 1) % z == 0);

  std::vector<mint> a2(n), b2(m);
  for (int i = 0; i < n; i++) {
    a2[i] = mint(a[i]);
  }
  for (int i = 0; i < m; i++) {
    b2[i] = mint(b[i]);
  }
  auto c2 = convolution(std::move(a2), std::move(b2));
  std::vector<T> c(n + m - 1);
  for (int i = 0; i < n + m - 1; i++) {
    c[i] = c2[i].val();
  }
  return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
  int n = int(a.size()), m = int(b.size());
  if (!n || !m) return {};

  static constexpr unsigned long long MOD1 = 754974721;
  static constexpr unsigned long long MOD2 = 167772161;
  static constexpr unsigned long long MOD3 = 469762049;
  static constexpr unsigned long long M2M3 = MOD2 * MOD3;
  static constexpr unsigned long long M1M3 = MOD1 * MOD3;
  static constexpr unsigned long long M1M2 = MOD1 * MOD2;
  static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

  static constexpr unsigned long long i1 =
      internal::inv_gcd(MOD2 * MOD3, MOD1).second;
  static constexpr unsigned long long i2 =
      internal::inv_gcd(MOD1 * MOD3, MOD2).second;
  static constexpr unsigned long long i3 =
      internal::inv_gcd(MOD1 * MOD2, MOD3).second;
  static constexpr int MAX_AB_BIT = 24;
  static_assert(MOD1 % (1ull << MAX_AB_BIT) == 1,
                "MOD1 isn't enough to support an array length of 2^24.");
  static_assert(MOD2 % (1ull << MAX_AB_BIT) == 1,
                "MOD2 isn't enough to support an array length of 2^24.");
  static_assert(MOD3 % (1ull << MAX_AB_BIT) == 1,
                "MOD3 isn't enough to support an array length of 2^24.");
  assert(n + m - 1 <= (1 << MAX_AB_BIT));

  auto c1 = convolution<MOD1>(a, b);
  auto c2 = convolution<MOD2>(a, b);
  auto c3 = convolution<MOD3>(a, b);

  std::vector<long long> c(n + m - 1);
  for (int i = 0; i < n + m - 1; i++) {
    unsigned long long x = 0;
    x += (c1[i] * i1) % MOD1 * M2M3;
    x += (c2[i] * i2) % MOD2 * M1M3;
    x += (c3[i] * i3) % MOD3 * M1M2;
    long long diff =
        c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
    if (diff < 0) diff += MOD1;
    static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3,
                                                     3 * M1M2M3};
    x -= offset[diff % 5];
    c[i] = x;
  }

  return c;
}

}  // namespace atcoder

template <class T, class U = T>
bool chmin(T& x, U&& y) {
  return y < x && (x = forward<U>(y), true);
}

template <class T, class U = T>
bool chmax(T& x, U&& y) {
  return x < y && (x = forward<U>(y), true);
}

namespace std {

template <class T1, class T2>
istream& operator>>(istream& is, pair<T1, T2>& p) {
  return is >> p.first >> p.second;
}

template <class... Ts>
istream& operator>>(istream& is, tuple<Ts...>& t) {
  return apply([&is](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}

template <class... Ts>
istream& operator>>(istream& is, tuple<Ts&...>&& t) {
  return is >> t;
}

template <class R, enable_if_t<!is_convertible_v<R, string>>* = nullptr>
auto operator>>(istream& is, R&& r) -> decltype(is >> *begin(r)) {
  for (auto&& e : r) {
    is >> e;
  }
  return is;
}

template <class T1, class T2>
ostream& operator<<(ostream& os, const pair<T1, T2>& p) {
  return os << p.first << ' ' << p.second;
}

template <class... Ts>
ostream& operator<<(ostream& os, const tuple<Ts...>& t) {
  auto f = [&os](const auto&... xs) -> ostream& {
    [[maybe_unused]] auto sep = "";
    ((os << exchange(sep, " ") << xs), ...);
    return os;
  };
  return apply(f, t);
}

template <class R, enable_if_t<!is_convertible_v<R, string_view>>* = nullptr>
auto operator<<(ostream& os, R&& r) -> decltype(os << *begin(r)) {
  auto sep = "";
  for (auto&& e : r) {
    os << exchange(sep, " ") << e;
  }
  return os;
}

}  // namespace std

namespace atcoder {

template <class T, internal::is_modint_t<T>* = nullptr>
istream& operator>>(istream& is, T& x) {
  int v;
  is >> v;
  x = T::raw(v);
  return is;
}

template <class T, internal::is_modint_t<T>* = nullptr>
ostream& operator<<(ostream& os, const T& x) {
  return os << x.val();
}

}  // namespace atcoder

template <class... Ts>
void print(Ts&&... xs) {
  cout << tie(xs...) << '\n';
}

template <class F>
class fix {
 public:
  explicit fix(F f) : f_(move(f)) {}

  template <class... Ts>
  decltype(auto) operator()(Ts&&... xs) const {
    return f_(ref(*this), forward<Ts>(xs)...);
  }

 private:
  F f_;
};

inline auto rep(int l, int r) { return views::iota(min(l, r), r); }
inline auto rep(int n) { return rep(0, n); }
inline auto rep1(int l, int r) { return rep(l, r + 1); }
inline auto rep1(int n) { return rep(1, n + 1); }
inline auto per(int l, int r) { return rep(l, r) | views::reverse; }
inline auto per(int n) { return per(0, n); }
inline auto per1(int l, int r) { return per(l, r + 1); }
inline auto per1(int n) { return per(1, n + 1); }

inline auto len = ranges::ssize;

#endif  // __INCLUDE_LEVEL__

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3668kb

input:

2
????

output:

12

result:

ok 1 number(s): "12"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3904kb

input:

3
??YR?B

output:

4

result:

ok 1 number(s): "4"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3872kb

input:

5
YBYRPBYRYB

output:

0

result:

ok 1 number(s): "0"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3912kb

input:

10
PRPBPRPRPRPBYB?R?BY?

output:

3

result:

ok 1 number(s): "3"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3940kb

input:

10
?R?R?BYB?R?R?B?B?BYR

output:

96

result:

ok 1 number(s): "96"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3692kb

input:

10
YRPRYRY???P?YB?BYRY?

output:

32

result:

ok 1 number(s): "32"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3936kb

input:

10
PBYBPRPBYRPBYRYBPRPB

output:

0

result:

ok 1 number(s): "0"

Test #8:

score: 0
Accepted
time: 0ms
memory: 3648kb

input:

10
PBPRPRYBYRYRYB?B?RYB

output:

0

result:

ok 1 number(s): "0"

Test #9:

score: 0
Accepted
time: 0ms
memory: 3932kb

input:

10
PRP?PBPRYR??Y?YRPB?R

output:

12

result:

ok 1 number(s): "12"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3700kb

input:

10
?RYB??P??B?B?B???RPR

output:

416

result:

ok 1 number(s): "416"

Test #11:

score: 0
Accepted
time: 1719ms
memory: 13980kb

input:

50000
YBPBYRPRPRPRPBPRPBPBPBYRPRPBPBYRPBPRYBYBPBPBPRPBPBYRYBYRPBYRYRPBYRYRYRPBYBYRPBPBYBYBPBYRPBPBYBYBYRPBPRYBPBYBPRPRYBPRPBYBPRPBYRPBYBPRYBPBPBYRYBYBYBPRYBYRPRPRPRPRYRYBPBPBPBPRPRYBYRYBPRPRPRPBYBPBPRYRPRPBYRPBYRYRPBYBYBPBYRYRPBPRYBPRYBPBPBYRPBPBYBYBPRPBYBYBYRYRPBPRPRPRPRPRYBPBPBPRYBYRPRPRYBYRPRPBYR...

output:

0

result:

ok 1 number(s): "0"

Test #12:

score: 0
Accepted
time: 1713ms
memory: 14080kb

input:

50000
YRPBPBYRYRYRYBYBYRPBPBPBPBPBYRYBPBPRYBPBYRYRPRYBYBYBYRPRPBPBPRYRPBYBYBPBYRYRPRPBPBPBPRYBYBYRYRPRPRYBPRPBYRPBPRYRPRYBPRYBYBYRYRYBYRYRYBYRPBPBPBYBPBPRPBPRYRPRYBYBPBPRPBPBPRPRPBYRYRPBPBPBYRPBYBYBYRPBPRPBPRYBPRPRYBPRPBPBYRYRYRYBYRPRPRYBYBYBPBPRPBPRYRYRPRPRPBPBPRPRPBYBYRPRPRPBYBYRPBYBPRPRPRPRPRPBPB...

output:

0

result:

ok 1 number(s): "0"

Test #13:

score: 0
Accepted
time: 1726ms
memory: 13968kb

input:

50000
PRPRYBPBYBYBPBYRPBYRYBPBPBPRPRPBYBYRPRPRPRPRPRYRYBYRPBPBPRYRPRPBPRPBPRPRPRPBYRYRYRPBYBYRYRPRPRPRPRYBYBYBYBPBPRPBPBPRYRPRYRPRPRYRPRPBPBYRYBPRPRYRPBPBYBYBPBYRPBPRYRPRYRYBPBPBPRPBPRPRPRYBPBPBYBYBPRYRPRYRPBYRYBYRYRPBYBPBPRPRYRPRYBYRPRPRYBYBYBPBYRYRYRYRYRYRPBYBYRYRYBYRPRYRPBPBYBYRYBPBYBPRYBPBYRYBPR...

output:

0

result:

ok 1 number(s): "0"

Test #14:

score: 0
Accepted
time: 1723ms
memory: 13964kb

input:

50000
YRPRPBPRYRYRPRYBPBYRPRPBYRYRYRPBPBYRPRYBYBYBPRYRPBPRPBPBYRPRPRPBPBYBYBPRPRPRYRYRYBYRPBYBPBPRYBPRYBYBYBPBYBYBPBPBPRYRPRPBYRYBYRPRYBYRPRYRPRPRYRPBYRYRYBYRYRPRYRYRPBPRPBYRYRPBYRPBPBPBPRPBYBYBPRYBPBPBYRYRYBYRPRPBPRYBPRPBYRPBYBYBPBPRPBYRYRPRPBPRPBPBYRPRPBYRPRPRYRYRPBYBYBPBPBYBPBYBYRYBYRPBPBPBPRYRPB...

output:

0

result:

ok 1 number(s): "0"

Test #15:

score: 0
Accepted
time: 1726ms
memory: 14076kb

input:

50000
YBPBYRPRYRPRPBPBYBYRPBYRPBPRPRPBPBPBYRYBYRPBYRYRPBYRPRPRYBPRYRYBYBPRPRYBYBPRPRPRYRPRYBPRPBYRPBYRPBYRPRPBPBPRPBPBYRYBPRPBPBPBPBYRYRPRPRYBYRPRYBYBYBYBYRYRPBPRYRYRPRYBPRPBPRPRPRPRPBPRPBYBPBPBPBYRPBYBPBPRPBYRPRPRYRYBYRPRPBPRYBYRPBPRPBPRYRPRYBYRYBYBPRPRPRPBYRPBPBYRYRPBPRYBPRYBPRYBPRYBYRPBYBPBPBYRPR...

output:

0

result:

ok 1 number(s): "0"

Test #16:

score: 0
Accepted
time: 144ms
memory: 5016kb

input:

5000
PR?BPB?BY?PRY??RPB?R??YBY?P?YRPBYBPRP?YBYBYRPRPB?BPBPR?RYR??Y??RYR?BPRYR?RPRP?Y?PRY?Y?YB??PBYRYR?RPB?BPB?BY?P?Y?YBY??RPB?BPRPBY???PRP?YB?R?RP?PR?BPB???R?B?RP?PBYB?BPRYBP?P??B?RPRP???P???PRYB?RYRP?Y??RPR?BP?PR?BPBPRYR?B??PB??YBPB?B?BY?YB?RY?PR?RYB???BYBP?Y??RYRYB?RYBYBPBYRYBP?YBYR?RPBYBY?YRP??R?...

output:

101508706

result:

ok 1 number(s): "101508706"

Test #17:

score: 0
Accepted
time: 144ms
memory: 4764kb

input:

5000
Y?P?PBYBYBPBYB?RYBPRPB?B??YRY??RP?PB??P??BYR?B?BP??R?R?R?BYBP??BY?Y?PBY?Y?YR?RY?PRPR?R?RPR?RPR?BYR?B?B?RPRPR?RP?Y?YRP?Y??RYB????YRY?YR?BP?YB?B??Y??B?RPBYR?RP????B?RPR??????P?PRPR?RP?PR?????BP?P?YB?BYRP?PBP?YBYB?RPR?R?B?BYRYR?RPBPBY??BYBPRYRPBPB?R?RPR?BYBP?YRY?PR?BPR?RY????BYBYB?RYRP???Y???PBY?Y...

output:

748282195

result:

ok 1 number(s): "748282195"

Test #18:

score: 0
Accepted
time: 144ms
memory: 4756kb

input:

5000
P?PRPRPBP??RYB??YBPBYRYB?BP?YB?B?BY??R?BYRP??BPRY?YBYB?RY????B??????PB?RP?P??R?BPB?BY?PR?RPBPBPR?BY?YB?BYBYRYBYRYBY?Y??RP?YR?R?R?BY?PBY??RYBPBYBYBY?PBY?P?YB?RYR???RY?YBY?YRYRY?PBY?P?PBYRPRY?PBP???PBYRPRY?Y?P?P?Y?PR???B?B?RP???PBY?P?PR???BP?PR????P?YB??YR??YRYBYR?B?BP??BPB??P?Y?PRYRY?YB??YR?RY?Y...

output:

24097861

result:

ok 1 number(s): "24097861"

Test #19:

score: 0
Accepted
time: 144ms
memory: 4792kb

input:

5000
??PBPRYBPR??PRP?PRYBY???P?YRPBYBY?YR?RYR??Y?P?YRPR?BPBY?PRPRYB?RYBY?P?????YBPBYBY?Y??BY?PB???BP?P?Y???YR??YBP???YRYB?BPBPRP???PRY??B???BPB???R?RP?PB???BYRP?YB?BP??RP?PBYRPRPR??P??RY????B?????RP?YBYBPRYBYB?RYRYBP??RPB??YRPBY?PBPBP?YRYBPR?BPRYBPB???BYR?RY?PB?RYRY??BYRP?Y?YRP?PRPR????Y?PRPRYBP?YBP...

output:

447561693

result:

ok 1 number(s): "447561693"

Test #20:

score: 0
Accepted
time: 144ms
memory: 5056kb

input:

5000
P?P?P??????BPR?RY?PR??Y?Y??BPR??PB?B??PRP?YB???RPRPRPBY??R??PRYBYR?RPR?BP??R?B?RYRPRP??B?BYRY??R?RP???P?PRP??RY??RY?YBY???????P?Y?PBPRYBPRYRY?P?PB?BPR??P?Y?Y?Y?PR?RPB??Y??BYRP?PRPRY??R?RYBPR??YBP??B?RPRYBPR?BP??BYBYBPRYRPBPRPRY?Y?YBYRPBP?PB??Y?P??????R?BPBYR???BPR?B?R???BYR?BP?P?Y?YRY?PR??YBYB?...

output:

987042679

result:

ok 1 number(s): "987042679"

Test #21:

score: 0
Accepted
time: 144ms
memory: 4712kb

input:

5000
PRPBPRPRYRPRPBYBPBPBYRPBPBPBYRYRYBPBYRPRYBPBPRYBPBYRPRYBYRYRPBPBPBPBYRPBYRYBYRPRYBPBPBPRYBPRYBYBPRPBPBYRYBPRPBYRYRPRYBPRPRPBYRPBYRYRPRPRYRYRYBYBPBPBPBPRPRPBPRPRYRPBYRYRYRPBPRPRYRPRPBYBYBPBPRPRYRPBPRYBPRYBPRPRYRPRYRPBPRYBPRPRYBYRPBYRPRYBPRPRYBYRPRYRYBPRYBPRPBPRPRPRYBYRYRYRYRPBPRPBPRPBPRPBPRYRYBY...

output:

0

result:

ok 1 number(s): "0"

Test #22:

score: 0
Accepted
time: 139ms
memory: 4768kb

input:

5000
PRYRYBPBPRYRYRYRPBPBYBYRPBPBYRPRPRYBYRPRYRPBPRYBPBYRPRYRYRYBPBPBYBPBYBPBYRYRYRYRYBYRPRPBYRYBPRYBYBPRPRPBYRYRYRPBYBPBPRPRYRPRPBPRYBYBPBPBYBPBPBPRPBYRYRYRYRPRYBYBPBYBYBPBYBYRPRYRPRPRYBYRYBYRYRYBYBYRPBPRYRYRPRPRPRPRYRPRYRYRPBYBYRPBYBPBPRYBPBYBPBPRYRYRPBPRPRPBPRYRPRYBPBYRPRYBPBYRYBPRPRYRYBYBPRPBYBP...

output:

0

result:

ok 1 number(s): "0"

Test #23:

score: 0
Accepted
time: 144ms
memory: 4764kb

input:

5000
PBYRYRYBYBPBYBYBPBYBYRPRYBYRPRPBYRYBPRYBPRPRYRYRPBYRYRPRYRYBPBYBPBPRPBPRPBPBP?YRPBYBYBPRPRPBPRYRPRYBPRYRYBYRPRYBYBPBYRPBPBYBYRYBPRPBYRYBPBYBYRYRYRPRPRYBYBPRYRPRYBYBYBPRYBPBYRYBPBPRPRPBYBYRYBYRPRYBYBYBYBYBPBYRPRPRPRPRYBYRPRYRYRYBYRPBYRPBPRPRYBPBYBYRPRYBPRYBPRPRPRPBYRPRPBYRYBY?PRYRYRYBPRYRYBYRYBY...

output:

172032

result:

ok 1 number(s): "172032"

Test #24:

score: 0
Accepted
time: 144ms
memory: 4860kb

input:

5000
????YRPB??PB??Y?Y??R??P?PRY?P??B??PBPBP???PRP??RY??RP?YRYB?R?BY?P??B?B??Y??R?RYRYRP???P?YBPR?R????YBP???P????R?R?BPR??Y?Y?YBP?Y??RY???PR??????P?P?Y??B?R?????B??Y?Y??BY??B?B???RYR???R?RY??RP?PR?RY?PB??Y?P?P???P??B?R??YR?BYRY??????R??Y??RYRPBYR??Y?P?P??B?RP?Y??B?BPBP?P???Y??B?RY?YBYB?RYRYRYBYB???...

output:

589400951

result:

ok 1 number(s): "589400951"

Test #25:

score: 0
Accepted
time: 144ms
memory: 5056kb

input:

5000
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????...

output:

312356960

result:

ok 1 number(s): "312356960"

Test #26:

score: 0
Accepted
time: 1722ms
memory: 14060kb

input:

50000
YR?BPR?BP??B??YBY?PRY?PRYB??PB?BPBY??R???RPR??Y?Y???PR???BPBPRPRY?Y?P?Y?P?YR??YR?RP?YRP??B?B???R??YR?BPR?B?R?R??Y?YBYRPR?BPBPRPRPB??YBPR??PR??Y??RYBY??RPRPB??YBPR??PBY?PBPBPRPRPRYRYB??YR?BYRP?P??RYR?R?R?RPBP?Y?YR??YBYR??YRYR???BPRPR???BP??B?BPBYBYBYR?B?RPRPBP?P?YBPB?R?BPBPR?BP?PRYRPB?BY?Y??B?B...

output:

61578469

result:

ok 1 number(s): "61578469"

Test #27:

score: 0
Accepted
time: 1711ms
memory: 14052kb

input:

50000
Y??RPRP?PBYR?BPRPBYB??YBP?PBPB?????B?BYRYBPBYBPRPRYBP?P?YB?B??PBY?PB?R?RPR?RYBY?Y?PBY????B??YBYRPRY??BYR??PRPBP?P?P?Y?YBPRPBYBPRP???Y?P??RPBYBPBY??BY?Y?YRPB??Y?PBYB??P?Y?PRYBY?YBY??R?B??PR???BYRYB?RPBPBPBPR?RP??BYRYB?BP?PRP?P?YBPRP?PBYR???R?RPBP?P?YB?RPR?RYRP??B?RYRYRYBP??B???BYRYRPB??YRPRYBPB...

output:

21239954

result:

ok 1 number(s): "21239954"

Test #28:

score: 0
Accepted
time: 1727ms
memory: 14012kb

input:

50000
YR??PB?BP???YRP??BYRPRP?P?PRPRPR?RPRPBYBPBY??B?B?RPRPBYRP??R?B??PR??P?PR?RYBPRPRY????R?R?RY??B?RYB?R?B?BYBPB??YRYRYBY?P?PR?B?RP??RP?YRPRYBPBYB?BYBP????RYRYR?BPRP?YRY?PB???BP??????BPR?RP?YBPB?RY?PBPBP??BYRP?YBYRP?YBYB?RPRYBYBP?YBY?YB?R??PBYBY?PB?R????P??BPRPRPRY???P???PBPRYRYB?RP?YBYRYRY????RP?...

output:

268137953

result:

ok 1 number(s): "268137953"

Test #29:

score: 0
Accepted
time: 1710ms
memory: 14148kb

input:

50000
P???PR?RYBPB?RPBYB??YR??PB??YBPBP?Y?P??R?RYBPRPBYB??YB?R????YR?RPRPB?RYB?RPRP???PBYBY?YB?BYR??PR?B???B?R?RPR?RPR??PR?BYBPR????P???P?YRPR??P?PRYRYB?BYBY???P?PB?R??P??RYBPB?R?RYB???B????PRPRYR???BYRYR?B??PBP???PRP?P?YR??YRP??B?BY?Y?PRPRPRYRYRYRPRY?Y??RPBY?YR?BPRPB?R?BYR?BY??BY?P?Y?YBYRYBYRY?P??R...

output:

903429393

result:

ok 1 number(s): "903429393"

Test #30:

score: 0
Accepted
time: 1724ms
memory: 13980kb

input:

50000
P??RPBYB?RP?Y??BPBPBPBYRPRPBYRP?YR??P?PBY?Y?????PRYBPBP?Y??BY??BPR?BYB???R?B??YBYRP??BP?YBPRP?YBP?P?Y?PR??YRPBYBPR?BPBY?PRY??RP???PRYBP?YRP?P??R??P?YBPR??P?PRYB?BPRYRYBP??BYB?RP??RPB??PR?R??YBPR?B??YBY?Y???P??BYRP????RYB?RYR?BP?YBP?P???P?PB??PR?RP?PR?R??P?YB?B??P?YRY?Y??RY?P?YBYBYRYRY?YRPBYBYB...

output:

360140728

result:

ok 1 number(s): "360140728"

Test #31:

score: 0
Accepted
time: 1715ms
memory: 13976kb

input:

50000
PBYRYRYBYRYBYRPBYRPBPBYBYRYBYBPRPBYRYRYBYRPBPRYBYRYRYRYBYRYRYRPRYBYRPRPRPRYRPBYRPRPBYRPBYRYRPBYRYBPRYRPRYBYBYRYBPRPBYBPRPRPRYRPRYRPRYRPBYBPRPRYRYRPRPRPBYRYRYRPRPBPRPRYRYRYBYRYRYRPBYBYRPBPBYRPRPBPRYBPRPBYBPBPBPBYRYRPRPBYRPBYRYBPRPBYRYBPBPRPRPBYBPRYRPBYBYBYRPRYBYBYBPBYBPBPRYRYRYRPRYBYBYBPBPBYBPR...

output:

0

result:

ok 1 number(s): "0"

Test #32:

score: 0
Accepted
time: 1719ms
memory: 14008kb

input:

50000
PRYRPBPRYRYBYRYBYRYRYRPRPBPRPRYBYBPBYRPRYRYRYRYRPBYBPRPRPRPRPRPRYBPRPBYBPBYBYBYRPRPBYBYBYBYBPRPBYBPBPRYRYBYBPBYRYBYRPBYRYRYRYBYBYRYBYRPRPBPBPBPBPBPRPRYBYRYRPBPRPRYBYRPRYRYRYRYRPRPRYRPBPRYRYRPBYBPRPBYRYRYBYRYBPRYBYRYRPRYBYBPRPBYRPBYBYRYRYRYBPBPRPBYBPBYRYBYRPBPBYBPRYBYRYBPBYRYRPBYBPBYBPRPBYBYRYB...

output:

0

result:

ok 1 number(s): "0"

Test #33:

score: 0
Accepted
time: 1723ms
memory: 13972kb

input:

50000
PBPRPBYRPRYBYBYRPBPBYRPBPRPBPBPBYRPBYBYRPRYBPRPRYRYBPBPBYRPRYRYRPBYRYRPBPBYRPBPBYRPBYRYBYRYBYBYRYBPRPBYRYRYRPBYRPBYBPRYRYBPRYBYBYRPBPRYRYRYBYRPBPBPBPBPRYBYRPBYBYRYRYBYRYRYBYRPRYRPBYRPBPRYBYRPBPBYRYRPRYRYRYBPBYRPRPRPBPRPRYRPBPBYBPBPBYBYBYBPBYBPRPBYBYRPRPBYBPRPBPRPBYRPBPRYRPRYRYRYBPRPRPRYRPBYBPR...

output:

0

result:

ok 1 number(s): "0"

Test #34:

score: 0
Accepted
time: 1711ms
memory: 14056kb

input:

50000
?BY???P????RPB??P???YB?R?BY?YR????PR??P???????P?YRP?PRY?PB??Y?YR???B??Y?YR?BPRYR?B?B?BPRY?Y???PRY?PBYBPRP?Y?PBY?YRP?PR?R??PRYRY?Y?Y?Y?P?PBPB?RP?PRY?P???PRY???P???P???PB?B?B?B?B?BYBP?PR????P??BYRY??????R?B??P?????PBY??R?B??Y?YB??PBPB?B???R?BP??B?BPB?R????YR????YBP?P?YR????Y?PRPB??Y????R?R?RY??B...

output:

908700788

result:

ok 1 number(s): "908700788"

Test #35:

score: 0
Accepted
time: 1719ms
memory: 14064kb

input:

50000
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????...

output:

422064317

result:

ok 1 number(s): "422064317"