QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#205535 | #7559. Bocchi the Rock | ucup-team987# | AC ✓ | 1727ms | 14148kb | C++23 | 26.7kb | 2023-10-07 16:26:11 | 2023-10-07 16:26:11 |
Judging History
answer
#if __INCLUDE_LEVEL__ == 0
#include __BASE_FILE__
namespace {
using Fp = atcoder::modint998244353;
void solve() {
int n;
cin >> n;
vector<int> a(n * 2);
for (int& e : a) {
char c;
cin >> c;
if (c == 'Y' || c == 'R') {
e = 1;
}
if (c == 'P' || c == 'B') {
e = -1;
}
}
constexpr array pw{1, -1};
auto f = fix([&](auto self, int l, int r) -> array<array<vector<Fp>, 2>, 2> {
array<array<vector<Fp>, 2>, 2> ret;
for (int i : rep(2)) {
for (int j : rep(2)) {
ret[i][j].resize((r - l) * 4 - 1);
}
}
if (l + 1 == r) {
for (int i : rep(2)) {
for (int j : rep(2)) {
if (a[l * 2] != pw[i ^ 1] && a[l * 2 + 1] != pw[j ^ 1]) {
if (i ^ j) {
ret[i][j][0] += 1;
} else {
ret[i][j][2] += 1;
}
}
}
}
return ret;
}
int m = midpoint(l, r);
auto f = self(l, m);
auto g = self(m, r);
for (int fi : rep(2)) {
for (int fj : rep(2)) {
for (int gi : rep(2)) {
for (int gj : rep(2)) {
auto tmp = atcoder::convolution(f[fi][fj], g[gi][gj]);
if (fj ^ gi) {
for (int i : rep(len(tmp))) {
ret[fi][gj][i + 2] += tmp[i];
}
} else {
for (int i : rep(len(tmp))) {
ret[fi][gj][i] += tmp[i];
}
}
}
}
}
}
return ret;
})(0, n);
Fp ans = 0;
for (int i : rep(2)) {
for (int j : rep(2)) {
if (i ^ j) {
ans += f[i][j][n * 2 - 2];
} else {
ans += f[i][j][n * 2];
}
}
}
print(ans);
}
} // namespace
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
solve();
}
#else // __INCLUDE_LEVEL__
#include <bits/stdc++.h>
using namespace std;
namespace atcoder {
namespace internal {
using std::bit_ceil;
int countr_zero(unsigned int n) { return __builtin_ctz(n); }
constexpr int countr_zero_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m)
: _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u;
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,
unsigned __int128>;
template <class T>
using is_integral =
typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_signed_int =
typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value, make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type>::type;
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id>
struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
template <class mint, int g = internal::primitive_root<mint::mod()>,
internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
static constexpr int rank2 = countr_zero_constexpr(mint::mod() - 1);
std::array<mint, rank2 + 1> root;
std::array<mint, rank2 + 1> iroot;
std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;
std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;
fft_info() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::countr_zero((unsigned int)n);
static const fft_info<mint> info;
int len = 0;
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
for (int s = 0; s < (1 << len); s++) {
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if (s + 1 != (1 << len))
rot *= info.rate2[countr_zero(~(unsigned int)(s))];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto mod2 = 1ULL * mint::mod() * mint::mod();
auto a0 = 1ULL * a[i + offset].val();
auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val();
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len))
rot *= info.rate3[countr_zero(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::countr_zero((unsigned int)n);
static const fft_info<mint> info;
int len = h;
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++) {
int offset = s << (h - len + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
irot.val();
;
}
if (s + 1 != (1 << (len - 1)))
irot *= info.irate2[countr_zero(~(unsigned int)(s))];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
auto a0 = 1ULL * a[i + offset + 0 * p].val();
auto a1 = 1ULL * a[i + offset + 1 * p].val();
auto a2 = 1ULL * a[i + offset + 2 * p].val();
auto a3 = 1ULL * a[i + offset + 3 * p].val();
auto a2na3iimag =
1ULL * mint((mint::mod() + a2 - a3) * iimag.val()).val();
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] =
(a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
a[i + offset + 2 * p] =
(a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) * irot2.val();
a[i + offset + 3 * p] =
(a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
irot3.val();
}
if (s + 1 != (1 << (len - 2)))
irot *= info.irate3[countr_zero(~(unsigned int)(s))];
}
len -= 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
std::vector<mint> ans(n + m - 1);
if (n < m) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
ans[i + j] += a[i] * b[j];
}
}
} else {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
}
return ans;
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <unsigned int mod = 998244353, class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(std::move(a2), std::move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721;
static constexpr unsigned long long MOD2 = 167772161;
static constexpr unsigned long long MOD3 = 469762049;
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
static constexpr int MAX_AB_BIT = 24;
static_assert(MOD1 % (1ull << MAX_AB_BIT) == 1,
"MOD1 isn't enough to support an array length of 2^24.");
static_assert(MOD2 % (1ull << MAX_AB_BIT) == 1,
"MOD2 isn't enough to support an array length of 2^24.");
static_assert(MOD3 % (1ull << MAX_AB_BIT) == 1,
"MOD3 isn't enough to support an array length of 2^24.");
assert(n + m - 1 <= (1 << MAX_AB_BIT));
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3,
3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
template <class T, class U = T>
bool chmin(T& x, U&& y) {
return y < x && (x = forward<U>(y), true);
}
template <class T, class U = T>
bool chmax(T& x, U&& y) {
return x < y && (x = forward<U>(y), true);
}
namespace std {
template <class T1, class T2>
istream& operator>>(istream& is, pair<T1, T2>& p) {
return is >> p.first >> p.second;
}
template <class... Ts>
istream& operator>>(istream& is, tuple<Ts...>& t) {
return apply([&is](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}
template <class... Ts>
istream& operator>>(istream& is, tuple<Ts&...>&& t) {
return is >> t;
}
template <class R, enable_if_t<!is_convertible_v<R, string>>* = nullptr>
auto operator>>(istream& is, R&& r) -> decltype(is >> *begin(r)) {
for (auto&& e : r) {
is >> e;
}
return is;
}
template <class T1, class T2>
ostream& operator<<(ostream& os, const pair<T1, T2>& p) {
return os << p.first << ' ' << p.second;
}
template <class... Ts>
ostream& operator<<(ostream& os, const tuple<Ts...>& t) {
auto f = [&os](const auto&... xs) -> ostream& {
[[maybe_unused]] auto sep = "";
((os << exchange(sep, " ") << xs), ...);
return os;
};
return apply(f, t);
}
template <class R, enable_if_t<!is_convertible_v<R, string_view>>* = nullptr>
auto operator<<(ostream& os, R&& r) -> decltype(os << *begin(r)) {
auto sep = "";
for (auto&& e : r) {
os << exchange(sep, " ") << e;
}
return os;
}
} // namespace std
namespace atcoder {
template <class T, internal::is_modint_t<T>* = nullptr>
istream& operator>>(istream& is, T& x) {
int v;
is >> v;
x = T::raw(v);
return is;
}
template <class T, internal::is_modint_t<T>* = nullptr>
ostream& operator<<(ostream& os, const T& x) {
return os << x.val();
}
} // namespace atcoder
template <class... Ts>
void print(Ts&&... xs) {
cout << tie(xs...) << '\n';
}
template <class F>
class fix {
public:
explicit fix(F f) : f_(move(f)) {}
template <class... Ts>
decltype(auto) operator()(Ts&&... xs) const {
return f_(ref(*this), forward<Ts>(xs)...);
}
private:
F f_;
};
inline auto rep(int l, int r) { return views::iota(min(l, r), r); }
inline auto rep(int n) { return rep(0, n); }
inline auto rep1(int l, int r) { return rep(l, r + 1); }
inline auto rep1(int n) { return rep(1, n + 1); }
inline auto per(int l, int r) { return rep(l, r) | views::reverse; }
inline auto per(int n) { return per(0, n); }
inline auto per1(int l, int r) { return per(l, r + 1); }
inline auto per1(int n) { return per(1, n + 1); }
inline auto len = ranges::ssize;
#endif // __INCLUDE_LEVEL__
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3668kb
input:
2 ????
output:
12
result:
ok 1 number(s): "12"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3904kb
input:
3 ??YR?B
output:
4
result:
ok 1 number(s): "4"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3872kb
input:
5 YBYRPBYRYB
output:
0
result:
ok 1 number(s): "0"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3912kb
input:
10 PRPBPRPRPRPBYB?R?BY?
output:
3
result:
ok 1 number(s): "3"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3940kb
input:
10 ?R?R?BYB?R?R?B?B?BYR
output:
96
result:
ok 1 number(s): "96"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3692kb
input:
10 YRPRYRY???P?YB?BYRY?
output:
32
result:
ok 1 number(s): "32"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3936kb
input:
10 PBYBPRPBYRPBYRYBPRPB
output:
0
result:
ok 1 number(s): "0"
Test #8:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
10 PBPRPRYBYRYRYB?B?RYB
output:
0
result:
ok 1 number(s): "0"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3932kb
input:
10 PRP?PBPRYR??Y?YRPB?R
output:
12
result:
ok 1 number(s): "12"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3700kb
input:
10 ?RYB??P??B?B?B???RPR
output:
416
result:
ok 1 number(s): "416"
Test #11:
score: 0
Accepted
time: 1719ms
memory: 13980kb
input:
50000 YBPBYRPRPRPRPBPRPBPBPBYRPRPBPBYRPBPRYBYBPBPBPRPBPBYRYBYRPBYRYRPBYRYRYRPBYBYRPBPBYBYBPBYRPBPBYBYBYRPBPRYBPBYBPRPRYBPRPBYBPRPBYRPBYBPRYBPBPBYRYBYBYBPRYBYRPRPRPRPRYRYBPBPBPBPRPRYBYRYBPRPRPRPBYBPBPRYRPRPBYRPBYRYRPBYBYBPBYRYRPBPRYBPRYBPBPBYRPBPBYBYBPRPBYBYBYRYRPBPRPRPRPRPRYBPBPBPRYBYRPRPRYBYRPRPBYR...
output:
0
result:
ok 1 number(s): "0"
Test #12:
score: 0
Accepted
time: 1713ms
memory: 14080kb
input:
50000 YRPBPBYRYRYRYBYBYRPBPBPBPBPBYRYBPBPRYBPBYRYRPRYBYBYBYRPRPBPBPRYRPBYBYBPBYRYRPRPBPBPBPRYBYBYRYRPRPRYBPRPBYRPBPRYRPRYBPRYBYBYRYRYBYRYRYBYRPBPBPBYBPBPRPBPRYRPRYBYBPBPRPBPBPRPRPBYRYRPBPBPBYRPBYBYBYRPBPRPBPRYBPRPRYBPRPBPBYRYRYRYBYRPRPRYBYBYBPBPRPBPRYRYRPRPRPBPBPRPRPBYBYRPRPRPBYBYRPBYBPRPRPRPRPRPBPB...
output:
0
result:
ok 1 number(s): "0"
Test #13:
score: 0
Accepted
time: 1726ms
memory: 13968kb
input:
50000 PRPRYBPBYBYBPBYRPBYRYBPBPBPRPRPBYBYRPRPRPRPRPRYRYBYRPBPBPRYRPRPBPRPBPRPRPRPBYRYRYRPBYBYRYRPRPRPRPRYBYBYBYBPBPRPBPBPRYRPRYRPRPRYRPRPBPBYRYBPRPRYRPBPBYBYBPBYRPBPRYRPRYRYBPBPBPRPBPRPRPRYBPBPBYBYBPRYRPRYRPBYRYBYRYRPBYBPBPRPRYRPRYBYRPRPRYBYBYBPBYRYRYRYRYRYRPBYBYRYRYBYRPRYRPBPBYBYRYBPBYBPRYBPBYRYBPR...
output:
0
result:
ok 1 number(s): "0"
Test #14:
score: 0
Accepted
time: 1723ms
memory: 13964kb
input:
50000 YRPRPBPRYRYRPRYBPBYRPRPBYRYRYRPBPBYRPRYBYBYBPRYRPBPRPBPBYRPRPRPBPBYBYBPRPRPRYRYRYBYRPBYBPBPRYBPRYBYBYBPBYBYBPBPBPRYRPRPBYRYBYRPRYBYRPRYRPRPRYRPBYRYRYBYRYRPRYRYRPBPRPBYRYRPBYRPBPBPBPRPBYBYBPRYBPBPBYRYRYBYRPRPBPRYBPRPBYRPBYBYBPBPRPBYRYRPRPBPRPBPBYRPRPBYRPRPRYRYRPBYBYBPBPBYBPBYBYRYBYRPBPBPBPRYRPB...
output:
0
result:
ok 1 number(s): "0"
Test #15:
score: 0
Accepted
time: 1726ms
memory: 14076kb
input:
50000 YBPBYRPRYRPRPBPBYBYRPBYRPBPRPRPBPBPBYRYBYRPBYRYRPBYRPRPRYBPRYRYBYBPRPRYBYBPRPRPRYRPRYBPRPBYRPBYRPBYRPRPBPBPRPBPBYRYBPRPBPBPBPBYRYRPRPRYBYRPRYBYBYBYBYRYRPBPRYRYRPRYBPRPBPRPRPRPRPBPRPBYBPBPBPBYRPBYBPBPRPBYRPRPRYRYBYRPRPBPRYBYRPBPRPBPRYRPRYBYRYBYBPRPRPRPBYRPBPBYRYRPBPRYBPRYBPRYBPRYBYRPBYBPBPBYRPR...
output:
0
result:
ok 1 number(s): "0"
Test #16:
score: 0
Accepted
time: 144ms
memory: 5016kb
input:
5000 PR?BPB?BY?PRY??RPB?R??YBY?P?YRPBYBPRP?YBYBYRPRPB?BPBPR?RYR??Y??RYR?BPRYR?RPRP?Y?PRY?Y?YB??PBYRYR?RPB?BPB?BY?P?Y?YBY??RPB?BPRPBY???PRP?YB?R?RP?PR?BPB???R?B?RP?PBYB?BPRYBP?P??B?RPRP???P???PRYB?RYRP?Y??RPR?BP?PR?BPBPRYR?B??PB??YBPB?B?BY?YB?RY?PR?RYB???BYBP?Y??RYRYB?RYBYBPBYRYBP?YBYR?RPBYBY?YRP??R?...
output:
101508706
result:
ok 1 number(s): "101508706"
Test #17:
score: 0
Accepted
time: 144ms
memory: 4764kb
input:
5000 Y?P?PBYBYBPBYB?RYBPRPB?B??YRY??RP?PB??P??BYR?B?BP??R?R?R?BYBP??BY?Y?PBY?Y?YR?RY?PRPR?R?RPR?RPR?BYR?B?B?RPRPR?RP?Y?YRP?Y??RYB????YRY?YR?BP?YB?B??Y??B?RPBYR?RP????B?RPR??????P?PRPR?RP?PR?????BP?P?YB?BYRP?PBP?YBYB?RPR?R?B?BYRYR?RPBPBY??BYBPRYRPBPB?R?RPR?BYBP?YRY?PR?BPR?RY????BYBYB?RYRP???Y???PBY?Y...
output:
748282195
result:
ok 1 number(s): "748282195"
Test #18:
score: 0
Accepted
time: 144ms
memory: 4756kb
input:
5000 P?PRPRPBP??RYB??YBPBYRYB?BP?YB?B?BY??R?BYRP??BPRY?YBYB?RY????B??????PB?RP?P??R?BPB?BY?PR?RPBPBPR?BY?YB?BYBYRYBYRYBY?Y??RP?YR?R?R?BY?PBY??RYBPBYBYBY?PBY?P?YB?RYR???RY?YBY?YRYRY?PBY?P?PBYRPRY?PBP???PBYRPRY?Y?P?P?Y?PR???B?B?RP???PBY?P?PR???BP?PR????P?YB??YR??YRYBYR?B?BP??BPB??P?Y?PRYRY?YB??YR?RY?Y...
output:
24097861
result:
ok 1 number(s): "24097861"
Test #19:
score: 0
Accepted
time: 144ms
memory: 4792kb
input:
5000 ??PBPRYBPR??PRP?PRYBY???P?YRPBYBY?YR?RYR??Y?P?YRPR?BPBY?PRPRYB?RYBY?P?????YBPBYBY?Y??BY?PB???BP?P?Y???YR??YBP???YRYB?BPBPRP???PRY??B???BPB???R?RP?PB???BYRP?YB?BP??RP?PBYRPRPR??P??RY????B?????RP?YBYBPRYBYB?RYRYBP??RPB??YRPBY?PBPBP?YRYBPR?BPRYBPB???BYR?RY?PB?RYRY??BYRP?Y?YRP?PRPR????Y?PRPRYBP?YBP...
output:
447561693
result:
ok 1 number(s): "447561693"
Test #20:
score: 0
Accepted
time: 144ms
memory: 5056kb
input:
5000 P?P?P??????BPR?RY?PR??Y?Y??BPR??PB?B??PRP?YB???RPRPRPBY??R??PRYBYR?RPR?BP??R?B?RYRPRP??B?BYRY??R?RP???P?PRP??RY??RY?YBY???????P?Y?PBPRYBPRYRY?P?PB?BPR??P?Y?Y?Y?PR?RPB??Y??BYRP?PRPRY??R?RYBPR??YBP??B?RPRYBPR?BP??BYBYBPRYRPBPRPRY?Y?YBYRPBP?PB??Y?P??????R?BPBYR???BPR?B?R???BYR?BP?P?Y?YRY?PR??YBYB?...
output:
987042679
result:
ok 1 number(s): "987042679"
Test #21:
score: 0
Accepted
time: 144ms
memory: 4712kb
input:
5000 PRPBPRPRYRPRPBYBPBPBYRPBPBPBYRYRYBPBYRPRYBPBPRYBPBYRPRYBYRYRPBPBPBPBYRPBYRYBYRPRYBPBPBPRYBPRYBYBPRPBPBYRYBPRPBYRYRPRYBPRPRPBYRPBYRYRPRPRYRYRYBYBPBPBPBPRPRPBPRPRYRPBYRYRYRPBPRPRYRPRPBYBYBPBPRPRYRPBPRYBPRYBPRPRYRPRYRPBPRYBPRPRYBYRPBYRPRYBPRPRYBYRPRYRYBPRYBPRPBPRPRPRYBYRYRYRYRPBPRPBPRPBPRPBPRYRYBY...
output:
0
result:
ok 1 number(s): "0"
Test #22:
score: 0
Accepted
time: 139ms
memory: 4768kb
input:
5000 PRYRYBPBPRYRYRYRPBPBYBYRPBPBYRPRPRYBYRPRYRPBPRYBPBYRPRYRYRYBPBPBYBPBYBPBYRYRYRYRYBYRPRPBYRYBPRYBYBPRPRPBYRYRYRPBYBPBPRPRYRPRPBPRYBYBPBPBYBPBPBPRPBYRYRYRYRPRYBYBPBYBYBPBYBYRPRYRPRPRYBYRYBYRYRYBYBYRPBPRYRYRPRPRPRPRYRPRYRYRPBYBYRPBYBPBPRYBPBYBPBPRYRYRPBPRPRPBPRYRPRYBPBYRPRYBPBYRYBPRPRYRYBYBPRPBYBP...
output:
0
result:
ok 1 number(s): "0"
Test #23:
score: 0
Accepted
time: 144ms
memory: 4764kb
input:
5000 PBYRYRYBYBPBYBYBPBYBYRPRYBYRPRPBYRYBPRYBPRPRYRYRPBYRYRPRYRYBPBYBPBPRPBPRPBPBP?YRPBYBYBPRPRPBPRYRPRYBPRYRYBYRPRYBYBPBYRPBPBYBYRYBPRPBYRYBPBYBYRYRYRPRPRYBYBPRYRPRYBYBYBPRYBPBYRYBPBPRPRPBYBYRYBYRPRYBYBYBYBYBPBYRPRPRPRPRYBYRPRYRYRYBYRPBYRPBPRPRYBPBYBYRPRYBPRYBPRPRPRPBYRPRPBYRYBY?PRYRYRYBPRYRYBYRYBY...
output:
172032
result:
ok 1 number(s): "172032"
Test #24:
score: 0
Accepted
time: 144ms
memory: 4860kb
input:
5000 ????YRPB??PB??Y?Y??R??P?PRY?P??B??PBPBP???PRP??RY??RP?YRYB?R?BY?P??B?B??Y??R?RYRYRP???P?YBPR?R????YBP???P????R?R?BPR??Y?Y?YBP?Y??RY???PR??????P?P?Y??B?R?????B??Y?Y??BY??B?B???RYR???R?RY??RP?PR?RY?PB??Y?P?P???P??B?R??YR?BYRY??????R??Y??RYRPBYR??Y?P?P??B?RP?Y??B?BPBP?P???Y??B?RY?YBYB?RYRYRYBYB???...
output:
589400951
result:
ok 1 number(s): "589400951"
Test #25:
score: 0
Accepted
time: 144ms
memory: 5056kb
input:
5000 ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????...
output:
312356960
result:
ok 1 number(s): "312356960"
Test #26:
score: 0
Accepted
time: 1722ms
memory: 14060kb
input:
50000 YR?BPR?BP??B??YBY?PRY?PRYB??PB?BPBY??R???RPR??Y?Y???PR???BPBPRPRY?Y?P?Y?P?YR??YR?RP?YRP??B?B???R??YR?BPR?B?R?R??Y?YBYRPR?BPBPRPRPB??YBPR??PR??Y??RYBY??RPRPB??YBPR??PBY?PBPBPRPRPRYRYB??YR?BYRP?P??RYR?R?R?RPBP?Y?YR??YBYR??YRYR???BPRPR???BP??B?BPBYBYBYR?B?RPRPBP?P?YBPB?R?BPBPR?BP?PRYRPB?BY?Y??B?B...
output:
61578469
result:
ok 1 number(s): "61578469"
Test #27:
score: 0
Accepted
time: 1711ms
memory: 14052kb
input:
50000 Y??RPRP?PBYR?BPRPBYB??YBP?PBPB?????B?BYRYBPBYBPRPRYBP?P?YB?B??PBY?PB?R?RPR?RYBY?Y?PBY????B??YBYRPRY??BYR??PRPBP?P?P?Y?YBPRPBYBPRP???Y?P??RPBYBPBY??BY?Y?YRPB??Y?PBYB??P?Y?PRYBY?YBY??R?B??PR???BYRYB?RPBPBPBPR?RP??BYRYB?BP?PRP?P?YBPRP?PBYR???R?RPBP?P?YB?RPR?RYRP??B?RYRYRYBP??B???BYRYRPB??YRPRYBPB...
output:
21239954
result:
ok 1 number(s): "21239954"
Test #28:
score: 0
Accepted
time: 1727ms
memory: 14012kb
input:
50000 YR??PB?BP???YRP??BYRPRP?P?PRPRPR?RPRPBYBPBY??B?B?RPRPBYRP??R?B??PR??P?PR?RYBPRPRY????R?R?RY??B?RYB?R?B?BYBPB??YRYRYBY?P?PR?B?RP??RP?YRPRYBPBYB?BYBP????RYRYR?BPRP?YRY?PB???BP??????BPR?RP?YBPB?RY?PBPBP??BYRP?YBYRP?YBYB?RPRYBYBP?YBY?YB?R??PBYBY?PB?R????P??BPRPRPRY???P???PBPRYRYB?RP?YBYRYRY????RP?...
output:
268137953
result:
ok 1 number(s): "268137953"
Test #29:
score: 0
Accepted
time: 1710ms
memory: 14148kb
input:
50000 P???PR?RYBPB?RPBYB??YR??PB??YBPBP?Y?P??R?RYBPRPBYB??YB?R????YR?RPRPB?RYB?RPRP???PBYBY?YB?BYR??PR?B???B?R?RPR?RPR??PR?BYBPR????P???P?YRPR??P?PRYRYB?BYBY???P?PB?R??P??RYBPB?R?RYB???B????PRPRYR???BYRYR?B??PBP???PRP?P?YR??YRP??B?BY?Y?PRPRPRYRYRYRPRY?Y??RPBY?YR?BPRPB?R?BYR?BY??BY?P?Y?YBYRYBYRY?P??R...
output:
903429393
result:
ok 1 number(s): "903429393"
Test #30:
score: 0
Accepted
time: 1724ms
memory: 13980kb
input:
50000 P??RPBYB?RP?Y??BPBPBPBYRPRPBYRP?YR??P?PBY?Y?????PRYBPBP?Y??BY??BPR?BYB???R?B??YBYRP??BP?YBPRP?YBP?P?Y?PR??YRPBYBPR?BPBY?PRY??RP???PRYBP?YRP?P??R??P?YBPR??P?PRYB?BPRYRYBP??BYB?RP??RPB??PR?R??YBPR?B??YBY?Y???P??BYRP????RYB?RYR?BP?YBP?P???P?PB??PR?RP?PR?R??P?YB?B??P?YRY?Y??RY?P?YBYBYRYRY?YRPBYBYB...
output:
360140728
result:
ok 1 number(s): "360140728"
Test #31:
score: 0
Accepted
time: 1715ms
memory: 13976kb
input:
50000 PBYRYRYBYRYBYRPBYRPBPBYBYRYBYBPRPBYRYRYBYRPBPRYBYRYRYRYBYRYRYRPRYBYRPRPRPRYRPBYRPRPBYRPBYRYRPBYRYBPRYRPRYBYBYRYBPRPBYBPRPRPRYRPRYRPRYRPBYBPRPRYRYRPRPRPBYRYRYRPRPBPRPRYRYRYBYRYRYRPBYBYRPBPBYRPRPBPRYBPRPBYBPBPBPBYRYRPRPBYRPBYRYBPRPBYRYBPBPRPRPBYBPRYRPBYBYBYRPRYBYBYBPBYBPBPRYRYRYRPRYBYBYBPBPBYBPR...
output:
0
result:
ok 1 number(s): "0"
Test #32:
score: 0
Accepted
time: 1719ms
memory: 14008kb
input:
50000 PRYRPBPRYRYBYRYBYRYRYRPRPBPRPRYBYBPBYRPRYRYRYRYRPBYBPRPRPRPRPRPRYBPRPBYBPBYBYBYRPRPBYBYBYBYBPRPBYBPBPRYRYBYBPBYRYBYRPBYRYRYRYBYBYRYBYRPRPBPBPBPBPBPRPRYBYRYRPBPRPRYBYRPRYRYRYRYRPRPRYRPBPRYRYRPBYBPRPBYRYRYBYRYBPRYBYRYRPRYBYBPRPBYRPBYBYRYRYRYBPBPRPBYBPBYRYBYRPBPBYBPRYBYRYBPBYRYRPBYBPBYBPRPBYBYRYB...
output:
0
result:
ok 1 number(s): "0"
Test #33:
score: 0
Accepted
time: 1723ms
memory: 13972kb
input:
50000 PBPRPBYRPRYBYBYRPBPBYRPBPRPBPBPBYRPBYBYRPRYBPRPRYRYBPBPBYRPRYRYRPBYRYRPBPBYRPBPBYRPBYRYBYRYBYBYRYBPRPBYRYRYRPBYRPBYBPRYRYBPRYBYBYRPBPRYRYRYBYRPBPBPBPBPRYBYRPBYBYRYRYBYRYRYBYRPRYRPBYRPBPRYBYRPBPBYRYRPRYRYRYBPBYRPRPRPBPRPRYRPBPBYBPBPBYBYBYBPBYBPRPBYBYRPRPBYBPRPBPRPBYRPBPRYRPRYRYRYBPRPRPRYRPBYBPR...
output:
0
result:
ok 1 number(s): "0"
Test #34:
score: 0
Accepted
time: 1711ms
memory: 14056kb
input:
50000 ?BY???P????RPB??P???YB?R?BY?YR????PR??P???????P?YRP?PRY?PB??Y?YR???B??Y?YR?BPRYR?B?B?BPRY?Y???PRY?PBYBPRP?Y?PBY?YRP?PR?R??PRYRY?Y?Y?Y?P?PBPB?RP?PRY?P???PRY???P???P???PB?B?B?B?B?BYBP?PR????P??BYRY??????R?B??P?????PBY??R?B??Y?YB??PBPB?B???R?BP??B?BPB?R????YR????YBP?P?YR????Y?PRPB??Y????R?R?RY??B...
output:
908700788
result:
ok 1 number(s): "908700788"
Test #35:
score: 0
Accepted
time: 1719ms
memory: 14064kb
input:
50000 ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????...
output:
422064317
result:
ok 1 number(s): "422064317"