QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#203579#6736. Alice and BobasxziillAC ✓186ms120472kbC++237.3kb2023-10-06 18:20:572023-10-06 18:20:58

Judging History

This is the latest submission verdict.

  • [2023-10-06 18:20:58]
  • Judged
  • Verdict: AC
  • Time: 186ms
  • Memory: 120472kb
  • [2023-10-06 18:20:57]
  • Submitted

answer

#include <bits/stdc++.h>

const int N=1e5+5;
const int M=1e5+5;
const int inf=0x3fffffff;
typedef long long ll;
typedef unsigned long long ull;
typedef __int128 lll;

/*
一个排列
A先
对当前排列,重排前面p1(当前排列第一个数)个数
如果相同的p1就输
求B赢的排列数

首先先手的重排可以决定后手的p1
如果换后p1大于等于原来,则后手可以换回 输
如果范围内的数最小值小于原来的p1则先手赢(按升序排,则后手每次操作都能换回来且自己的p1换不回来),
所以答案就是前p1个数里没有小于p1的情况
设p1=x
则有n-x里选x-1排列,剩下n-x排列
*/

using i64 = long long;
template<class T>
constexpr T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}
 
constexpr i64 mul(i64 a, i64 b, i64 p) {
    i64 res = a * b - i64(1.L * a * b / p) * p;
    res %= p;
    if (res < 0) {
        res += p;
    }
    return res;
}
template<i64 P>
struct MLong {
    i64 x;
    constexpr MLong() : x{} {}
    constexpr MLong(i64 x) : x{norm(x % getMod())} {}
    
    static i64 Mod;
    constexpr static i64 getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(i64 Mod_) {
        Mod = Mod_;
    }
    constexpr i64 norm(i64 x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr i64 val() const {
        return x;
    }
    explicit constexpr operator i64() const {
        return x;
    }
    constexpr MLong operator-() const {
        MLong res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MLong inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MLong &operator*=(MLong rhs) & {
        x = mul(x, rhs.x, getMod());
        return *this;
    }
    constexpr MLong &operator+=(MLong rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MLong &operator-=(MLong rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MLong &operator/=(MLong rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MLong operator*(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MLong operator+(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MLong operator-(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MLong operator/(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
        i64 v;
        is >> v;
        a = MLong(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MLong lhs, MLong rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MLong lhs, MLong rhs) {
        return lhs.val() != rhs.val();
    }
};
 
template<>
i64 MLong<0LL>::Mod = i64(1E18) + 9;
 
template<int P>
struct MInt {
    int x;
    constexpr MInt() : x{} {}
    constexpr MInt(i64 x) : x{norm(x % getMod())} {}
    
    static int Mod;
    constexpr static int getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(int Mod_) {
        Mod = Mod_;
    }
    constexpr int norm(int x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr int val() const {
        return x;
    }
    explicit constexpr operator int() const {
        return x;
    }
    constexpr MInt operator-() const {
        MInt res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MInt inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MInt &operator*=(MInt rhs) & {
        x = 1LL * x * rhs.x % getMod();
        return *this;
    }
    constexpr MInt &operator+=(MInt rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MInt &operator-=(MInt rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MInt &operator/=(MInt rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MInt operator*(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MInt operator+(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MInt operator-(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MInt operator/(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
        i64 v;
        is >> v;
        a = MInt(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MInt lhs, MInt rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MInt lhs, MInt rhs) {
        return lhs.val() != rhs.val();
    }
};
 
template<>
int MInt<0>::Mod = 998244353;
 
template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();

using Z=MInt<998244353>;

struct Comb {
    int n;
    std::vector<Z> _fac;
    std::vector<Z> _invfac;
    std::vector<Z> _inv;
    
    Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
    Comb(int n) : Comb() {
        init(n);
    }
    
    void init(int m) {
        if (m <= n) return;
        _fac.resize(m + 1);
        _invfac.resize(m + 1);
        _inv.resize(m + 1);
        
        for (int i = n + 1; i <= m; i++) {
            _fac[i] = _fac[i - 1] * i;
        }
        _invfac[m] = _fac[m].inv();
        for (int i = m; i > n; i--) {
            _invfac[i - 1] = _invfac[i] * i;
            _inv[i] = _invfac[i] * _fac[i - 1];
        }
        n = m;
    }
    
    Z fac(int m) {
        if (m > n) init(2 * m);
        return _fac[m];
    }
    Z invfac(int m) {
        if (m > n) init(2 * m);
        return _invfac[m];
    }
    Z inv(int m) {
        if (m > n) init(2 * m);
        return _inv[m];
    }
    Z binom(int n, int m) {
        if (n < m || m < 0) return 0;
        return fac(n) * invfac(m) * invfac(n - m);
    }
} comb;

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    int n;
    std::cin>>n;
    comb.init(n);
    Z ans;
    for (int i=1; i<=n; i++){
    	if (n-i>=0){
    		ans+=comb.binom(n-i, i-1)*comb.fac(i-1)*comb.fac(n-i);
    	}
    }
    std::cout<<ans;
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3588kb

input:

1

output:

1

result:

ok 1 number(s): "1"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3852kb

input:

2

output:

1

result:

ok 1 number(s): "1"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3880kb

input:

10

output:

997920

result:

ok 1 number(s): "997920"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3644kb

input:

100

output:

188898954

result:

ok 1 number(s): "188898954"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3652kb

input:

4

output:

10

result:

ok 1 number(s): "10"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3620kb

input:

8

output:

12336

result:

ok 1 number(s): "12336"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3816kb

input:

16

output:

373118483

result:

ok 1 number(s): "373118483"

Test #8:

score: 0
Accepted
time: 0ms
memory: 3816kb

input:

32

output:

314585464

result:

ok 1 number(s): "314585464"

Test #9:

score: 0
Accepted
time: 0ms
memory: 3644kb

input:

64

output:

627827331

result:

ok 1 number(s): "627827331"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3588kb

input:

128

output:

828497685

result:

ok 1 number(s): "828497685"

Test #11:

score: 0
Accepted
time: 0ms
memory: 3684kb

input:

256

output:

65697890

result:

ok 1 number(s): "65697890"

Test #12:

score: 0
Accepted
time: 0ms
memory: 3652kb

input:

512

output:

854187619

result:

ok 1 number(s): "854187619"

Test #13:

score: 0
Accepted
time: 0ms
memory: 3824kb

input:

1024

output:

513823539

result:

ok 1 number(s): "513823539"

Test #14:

score: 0
Accepted
time: 26ms
memory: 19260kb

input:

1361956

output:

617368199

result:

ok 1 number(s): "617368199"

Test #15:

score: 0
Accepted
time: 148ms
memory: 92032kb

input:

7579013

output:

827172636

result:

ok 1 number(s): "827172636"

Test #16:

score: 0
Accepted
time: 152ms
memory: 98688kb

input:

8145517

output:

710624331

result:

ok 1 number(s): "710624331"

Test #17:

score: 0
Accepted
time: 110ms
memory: 75148kb

input:

6140463

output:

707600568

result:

ok 1 number(s): "707600568"

Test #18:

score: 0
Accepted
time: 69ms
memory: 44404kb

input:

3515281

output:

698302413

result:

ok 1 number(s): "698302413"

Test #19:

score: 0
Accepted
time: 132ms
memory: 84916kb

input:

6969586

output:

69470392

result:

ok 1 number(s): "69470392"

Test #20:

score: 0
Accepted
time: 56ms
memory: 37052kb

input:

2888636

output:

433579983

result:

ok 1 number(s): "433579983"

Test #21:

score: 0
Accepted
time: 185ms
memory: 120360kb

input:

9999998

output:

758172780

result:

ok 1 number(s): "758172780"

Test #22:

score: 0
Accepted
time: 186ms
memory: 120272kb

input:

9999999

output:

605195495

result:

ok 1 number(s): "605195495"

Test #23:

score: 0
Accepted
time: 186ms
memory: 120472kb

input:

10000000

output:

866813682

result:

ok 1 number(s): "866813682"