QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#200505 | #622. 多项式多点求值 | NOI_AK_ME | 80 | 58ms | 113784kb | C++23 | 17.8kb | 2023-10-04 17:13:13 | 2023-10-04 17:13:13 |
Judging History
answer
#include<bits/stdc++.h>
using u32 = unsigned;
using u64 = unsigned long long;
using u128 = __uint128_t;
u32 output;
constexpr u32 N = 2e6 + 5;
constexpr u32 mod = 998244353;
constexpr u32 mod2 = mod * 2;
inline u64 getdiv(u64 x) {
constexpr u64 base = (-1ull) / mod;
return u64((u128) x * base >> 64);
}
inline u32 getmod(u64 x) {
return (u32) x - mod * u32(getdiv(x));
}
struct istream
{
static const u32 size = 1 << 22;
char buf[size], *vin;
inline istream()
{
fread(buf,1,size,stdin);
vin = buf - 1;
}
inline istream& operator >> (u32 & x)
{
for(x = *++vin & 15;isdigit(*++vin);) x = x * 10 + (*vin & 15);
return * this;
}
} cin;
struct ostream {
static const u32 size = 1 << 23;
char buf[size], *vout;
unsigned map[10000];
inline ostream() {
for(u32 i = 0;i < 10000;++i) {
map[i] = (i % 10 + 48) << 24 | (i / 10 % 10 + 48) << 16 | (i / 100 % 10 + 48) << 8 | (i / 1000 + 48);
}
vout = buf + size;
}
inline ~ ostream()
{ fwrite(vout,1,buf + size - vout,stdout); }
inline ostream& operator << (u32 x) {
if(x) {
for(;x >= 1000;x /= 10000) *--(unsigned*&)vout = map[x % 10000];
while(x) *--vout = x % 10 + 48, x /= 10;
} else *--vout = 48;
return * this;
}
inline ostream& operator << (char x)
{
*--vout = x;
return * this;
}
} cout;
struct multi_integer {
u32 val, ival;
inline multi_integer() {}
inline explicit multi_integer(u32 v) {
val = v;
ival = ((u64) v << 32) / mod;
}
__attribute((always_inline)) u32 operator * (u32 x) const {
return val * x - u32((u64) x * ival >> 32) * mod;
}
} wn[N << 1], iwn[N << 1];
u32 lim, shift;
u32 dfta[N], rev[N], w[N];
inline u32 get_index(u32 x, u32 lim) {
static u32 bak[50];
int i = 1, lg = std::__lg(lim);
*bak = x;
for(int i = 1;i < lg;++i) bak[i] = (u64) bak[i - 1] * bak[i - 1] % mod;
int res = 0;
for(int i = lg - 1;i >= 0;--i) if((u64) bak[i] * w[res << i & lim - 1] % mod != 1)
res += 1 << lg - 1 - i;
return res ? lim - res : 0;
}
__attribute((always_inline)) u32 norm1(u32 x) {
return x >= mod ? x - mod : x;
}
static constexpr u32 map[4] = {
0, mod, mod2, mod + mod2
};
inline u32 norm2(u32 x) {
return x - map[x >> 30];
}
inline u32 norm2_lazy(u32 x) {
return x - map[x >> 30];
}
inline u32 norm2_ex(u32 x) {
return x - map[x >> 30];
}
inline u32 pow(u32 a, u32 b, u32 ans = 1) {
for(;b;b >>= 1, a = (u64) a * a % mod) if(b & 1)
ans = (u64) ans * a % mod;
return ans;
}
inline u32 get(u32 x) {
return ((u64) x << 32) / mod;
}
inline void base_init(u32 len) {
u32 N = 1;
for(;N < len;)
N <<= 1;
const u32 mid = N >> 1;
const u32 w = pow(3, mod / N);
const u32 iw = pow((mod + 1) / 3, mod / N);
wn[mid] = multi_integer(1);
iwn[mid] = multi_integer(1);
for(int i = 1;i < mid;++i) {
wn[mid + i] = multi_integer((u64) wn[mid + i - 1].val * w % mod);
iwn[mid + i] = multi_integer((u64) iwn[mid + i - 1].val * iw % mod);
}
for(int i = mid - 1;i >= 0;--i) {
wn[i] = wn[i << 1];
iwn[i] = iwn[i << 1];
}
}
inline void init(u32 len) {
lim = len;
shift = std::__lg(lim);
}
inline void safe_init(u32 len) {
lim = 1, shift = 0;
for(;lim < len;)
lim <<= 1, ++ shift;
}
inline u32 multi(u32 w, u32 idx) {
return wn[idx] * w;
}
inline void dft(u32 * a) {
#define trans(a, b, idx) \
{ \
const u32 A = norm2(a + b);\
b = wn[idx] * (a + mod2 - b),\
a = A; \
}
#define trans2(a, b) \
{ \
const u32 A = norm2(a + b);\
b = norm2(a + mod2 - b), \
a = A; \
}
for(int mid = lim >> 1;mid != 4;mid >>= 1) {
for(int j = 0;j != lim;j += mid + mid) {
for(int k = 0;k != mid;k += 4) {
const u32 A0 = wn[mid + k + 0] * (a[j + k + 0] + mod2 - a[mid + j + k + 0]);
const u32 A1 = wn[mid + k + 1] * (a[j + k + 1] + mod2 - a[mid + j + k + 1]);
const u32 A2 = wn[mid + k + 2] * (a[j + k + 2] + mod2 - a[mid + j + k + 2]);
const u32 A3 = wn[mid + k + 3] * (a[j + k + 3] + mod2 - a[mid + j + k + 3]);
a[j + k + 0] = norm2(a[j + k + 0] + a[mid + j + k + 0]);
a[j + k + 1] = norm2(a[j + k + 1] + a[mid + j + k + 1]);
a[j + k + 2] = norm2(a[j + k + 2] + a[mid + j + k + 2]);
a[j + k + 3] = norm2(a[j + k + 3] + a[mid + j + k + 3]);
a[mid + j + k + 0] = A0;
a[mid + j + k + 1] = A1;
a[mid + j + k + 2] = A2;
a[mid + j + k + 3] = A3;
}
}
}
for(int j = 0;j != lim;j += 8) {
trans2(a[j + 0], a[j + 4]);
trans(a[j + 1], a[j + 5], 5);
trans(a[j + 2], a[j + 6], 6);
trans(a[j + 3], a[j + 7], 7);
trans2(a[j + 0], a[j + 2]);
trans(a[j + 1], a[j + 3], 3);
trans2(a[j + 4], a[j + 6]);
trans(a[j + 5], a[j + 7], 3);
trans2(a[j + 0], a[j + 1]);
trans2(a[j + 2], a[j + 3]);
trans2(a[j + 4], a[j + 5]);
trans2(a[j + 6], a[j + 7]);
}
#undef trans
#undef trans2
}
inline void dft_last(u32 * a) {
int mid = lim >> 1;
{
int k = 0, limit = mid / 2 + 1;
for(;k + 1 != limit;k += 4) {
a[mid + k + 0] = wn[mid + k + 0] * a[k + 0];
a[mid + k + 1] = wn[mid + k + 1] * a[k + 1];
a[mid + k + 2] = wn[mid + k + 2] * a[k + 2];
a[mid + k + 3] = wn[mid + k + 3] * a[k + 3];
}
a[mid + k + 0] = wn[mid + k + 0] * a[k + 0];
}
mid >>= 1;
const u32 A0 = wn[mid + 0] * (a[0] + mod2 - a[mid + 0]);
a[0] = norm2(a[0] + a[mid + 0]), a[mid + 0] = A0;
{
int k = 1;
for(;k + 3 != mid;k += 4) {
a[mid + k + 0] = wn[mid + k + 0] * a[k + 0];
a[mid + k + 1] = wn[mid + k + 1] * a[k + 1];
a[mid + k + 2] = wn[mid + k + 2] * a[k + 2];
a[mid + k + 3] = wn[mid + k + 3] * a[k + 3];
}
for(;k != mid;k += 1) a[mid + k + 0] = wn[mid + k + 0] * a[k + 0];
}
a += mid + mid;
const u32 A1 = wn[mid + 0] * (a[0] + mod2 - a[mid + 0]);
a[0] = norm2(a[0] + a[mid + 0]), a[mid + 0] = A1;
{
int k = 1;
for(;k + 3 != mid;k += 4) {
a[mid + k + 0] = wn[mid + k + 0] * a[k + 0];
a[mid + k + 1] = wn[mid + k + 1] * a[k + 1];
a[mid + k + 2] = wn[mid + k + 2] * a[k + 2];
a[mid + k + 3] = wn[mid + k + 3] * a[k + 3];
}
for(;k != mid;k += 1) a[mid + k + 0] = wn[mid + k + 0] * a[k + 0];
}
init(lim >> 2);
dft(a - lim);
dft(a);
dft(a + lim);
}
inline u32 div_lim(u32 x) {
return (x + u64(-x & (lim - 1)) * mod) >> shift;
}
inline void base_idft(u32 * a) {
#define trans(a, b, idx) \
{ \
u32 A = norm2_lazy(a), B = iwn[idx] * b; \
a = A + B; \
b = A + mod2 - B; \
}
#define trans2(a, b) \
{ \
const u32 A = norm2(a), B = norm2(b); \
a = A + B; \
b = A + mod2 - B; \
}
for(int j = 0;j != lim;j += 8) {
trans2(a[j + 0], a[j + 1]);
trans2(a[j + 2], a[j + 3]);
trans2(a[j + 4], a[j + 5]);
trans2(a[j + 6], a[j + 7]);
trans2(a[j + 0], a[j + 2]);
trans(a[j + 1], a[j + 3], 3);
trans2(a[j + 4], a[j + 6]);
trans(a[j + 5], a[j + 7], 3);
trans2(a[j + 0], a[j + 4]);
trans(a[j + 1], a[j + 5], 5);
trans(a[j + 2], a[j + 6], 6);
trans(a[j + 3], a[j + 7], 7);
}
for(int mid = 8;mid != lim;mid <<= 1) {
for(int j = 0;j != lim;j += mid + mid) {
for(int k = 0;k != mid;k += 4) {
const u32 A0 = norm2_lazy(a[j + k + 0]), B0 = iwn[mid + k + 0] * a[mid + j + k + 0];
const u32 A1 = norm2_lazy(a[j + k + 1]), B1 = iwn[mid + k + 1] * a[mid + j + k + 1];
const u32 A2 = norm2_lazy(a[j + k + 2]), B2 = iwn[mid + k + 2] * a[mid + j + k + 2];
const u32 A3 = norm2_lazy(a[j + k + 3]), B3 = iwn[mid + k + 3] * a[mid + j + k + 3];
a[mid + j + k + 0] = A0 + mod2 - B0;
a[mid + j + k + 1] = A1 + mod2 - B1;
a[mid + j + k + 2] = A2 + mod2 - B2;
a[mid + j + k + 3] = A3 + mod2 - B3;
a[j + k + 0] = A0 + B0;
a[j + k + 1] = A1 + B1;
a[j + k + 2] = A2 + B2;
a[j + k + 3] = A3 + B3;
}
}
}
#undef trans
#undef trans2
}
inline void idft_last_copy(u32 * a, u32 * res) {
#define trans(a, b, idx) \
{ \
u32 A = norm2_lazy(a), B = iwn[idx] * b; \
a = A + B; \
b = A + mod2 - B; \
}
#define trans2(a, b) \
{ \
const u32 A = norm2(a), B = norm2(b); \
a = A + B; \
b = A + mod2 - B; \
}
for(int j = 0;j != lim;j += 8) {
trans2(a[j + 0], a[j + 1]);
trans2(a[j + 2], a[j + 3]);
trans2(a[j + 4], a[j + 5]);
trans2(a[j + 6], a[j + 7]);
trans2(a[j + 0], a[j + 2]);
trans(a[j + 1], a[j + 3], 3);
trans2(a[j + 4], a[j + 6]);
trans(a[j + 5], a[j + 7], 3);
trans2(a[j + 0], a[j + 4]);
trans(a[j + 1], a[j + 5], 5);
trans(a[j + 2], a[j + 6], 6);
trans(a[j + 3], a[j + 7], 7);
}
for(int mid = 8;mid < lim >> 2;mid <<= 1) {
for(int j = 0;j != lim;j += mid + mid) {
for(int k = 0;k != mid;k += 4) {
const u32 A0 = norm2_lazy(a[j + k + 0]), B0 = iwn[mid + k + 0] * a[mid + j + k + 0];
const u32 A1 = norm2_lazy(a[j + k + 1]), B1 = iwn[mid + k + 1] * a[mid + j + k + 1];
const u32 A2 = norm2_lazy(a[j + k + 2]), B2 = iwn[mid + k + 2] * a[mid + j + k + 2];
const u32 A3 = norm2_lazy(a[j + k + 3]), B3 = iwn[mid + k + 3] * a[mid + j + k + 3];
a[mid + j + k + 0] = A0 + mod2 - B0;
a[mid + j + k + 1] = A1 + mod2 - B1;
a[mid + j + k + 2] = A2 + mod2 - B2;
a[mid + j + k + 3] = A3 + mod2 - B3;
a[j + k + 0] = A0 + B0;
a[j + k + 1] = A1 + B1;
a[j + k + 2] = A2 + B2;
a[j + k + 3] = A3 + B3;
}
}
}
int mid = lim >> 2;
for(int j = 0;j != lim;j += mid + mid) {
for(int k = 0;k != mid;k += 4) {
const u32 A0 = norm2_lazy(a[j + k + 0]), B0 = iwn[mid + k + 0] * a[mid + j + k + 0];
const u32 A1 = norm2_lazy(a[j + k + 1]), B1 = iwn[mid + k + 1] * a[mid + j + k + 1];
const u32 A2 = norm2_lazy(a[j + k + 2]), B2 = iwn[mid + k + 2] * a[mid + j + k + 2];
const u32 A3 = norm2_lazy(a[j + k + 3]), B3 = iwn[mid + k + 3] * a[mid + j + k + 3];
a[mid + j + k + 0] = A0 + mod2 - B0;
a[mid + j + k + 1] = A1 + mod2 - B1;
a[mid + j + k + 2] = A2 + mod2 - B2;
a[mid + j + k + 3] = A3 + mod2 - B3;
}
}
res -= mid;
mid <<= 1;
for(int k = mid >> 1;k != mid;k += 4) {
const u32 A0 = norm2_lazy(a[k + 0]), B0 = iwn[mid + k + 0] * a[mid + k + 0];
const u32 A1 = norm2_lazy(a[k + 1]), B1 = iwn[mid + k + 1] * a[mid + k + 1];
const u32 A2 = norm2_lazy(a[k + 2]), B2 = iwn[mid + k + 2] * a[mid + k + 2];
const u32 A3 = norm2_lazy(a[k + 3]), B3 = iwn[mid + k + 3] * a[mid + k + 3];
res[k + 0] = norm2_ex(A0 + mod2 - B0);
res[k + 1] = norm2_ex(A1 + mod2 - B1);
res[k + 2] = norm2_ex(A2 + mod2 - B2);
res[k + 3] = norm2_ex(A3 + mod2 - B3);
}
#undef trans
#undef trans2
}
inline void idft(u32 * a) {
base_idft(a);
for(int i = 0;i != lim;++i)
a[i] = div_lim(a[i]);
}
inline void fill(u32 * a, const u32 * b, u32 len)
{
memcpy(a, b, len << 2);
memset(a + len, 0, (lim - len) << 2);
}
inline void sub(u32 & x) { x = x ? x - 1 : mod - 1; }
static const u32 brute_limit = 32;
u32 n, m, M;
u32 a[N << 1], b[N << 1], b2[N], b4[N], c[N << 1], d[N << 1];
u32 ans[N];
u32 o[9][N];
u32 val[9][N << 2];
u32 sgt[9][N << 2];
u32 power_b[N], ex_b[N];
u32 dft_val[N];
inline void prod(u32* a, const u32* b, const u32* c) {
for(int i = 0;i < lim;i += 4) {
a[i + 0] = getmod((u64) b[i + 0] * c[i + 0]);
a[i + 1] = getmod((u64) b[i + 1] * c[i + 1]);
a[i + 2] = getmod((u64) b[i + 2] * c[i + 2]);
a[i + 3] = getmod((u64) b[i + 3] * c[i + 3]);
}
}
inline void solve(u32 dep, u32 l, u32 r, bool good) {
if(l >= m) {
std::fill(val[dep] + l * 4, val[dep] + r * 4, 1);
return ;
}
u32 n = r - l;
static u32 t[N];
if(n < brute_limit) {
u32 * x = o[dep] + l;
for(int i = l;i < r;i += 4) {
const u32 v0 = b[i + 0] ? mod - b[i + 0] : 0;
const u32 v1 = b[i + 1] ? mod - b[i + 1] : 0;
const u32 v2 = b[i + 2] ? mod - b[i + 2] : 0;
const u32 v3 = b[i + 3] ? mod - b[i + 3] : 0;
const u32 v01 = (u64) v0 * v1 % mod;
const u32 v23 = (u64) v2 * v3 % mod;
const u32 a4 = (u64) v01 * v23 % mod;
const u32 a3 = ((u64) v01 * (v2 + v3) + (u64) v23 * (v0 + v1)) % mod;
const u32 a2 = (v01 + v23 + (u64) (v0 + v1) * (v2 + v3)) % mod;
const u32 a1 = (v0 + v1 + v2 + v3) % mod;
for(int j = i - l + 3;j > 3;--j) {
x[j] = ((u64) x[j - 4] * a4 + (u64) x[j - 3] * a3 + (u64) x[j - 2] * a2 + (u64) x[j - 1] * a1 + x[j]) % mod;
}
x[3] = (a4 + (u64) x[0] * a3 + (u64) x[1] * a2 + (u64) x[2] * a1 + x[3]) % mod;
x[2] = (a3 + (u64) x[0] * a2 + (u64) x[1] * a1 + x[2]) % mod;
x[1] = (a2 + (u64) x[0] * a1 + x[1]) % mod;
x[0] = norm1(x[0] + a1);
}
} else {
u32 mid0 = (l * 3 + r * 1) >> 2;
u32 mid1 = (l * 2 + r * 2) >> 2;
u32 mid2 = (l * 1 + r * 3) >> 2;
solve(dep + 1, l, mid0, 1);
solve(dep + 1, mid0, mid1, 1);
solve(dep + 1, mid1, mid2, 1);
solve(dep + 1, mid2, r, 1);
init(n);
u32* da = val[dep + 1] + l * 4;
u32* db = val[dep + 1] + mid0 * 4;
u32* dc = val[dep + 1] + mid1 * 4;
u32* dd = val[dep + 1] + mid2 * 4;
if(mid0 >= m) {
memcpy(dft_val, da, lim << 2);
memcpy(o[dep] + l, o[dep + 1] + l, lim);
} else {
prod(sgt[dep] + l + l, da, db);
prod(sgt[dep] + mid1 + mid1, dc, dd);
prod(dft_val, sgt[dep] + l + l, sgt[dep] + mid1 + mid1);
memcpy(t, dft_val, lim << 2);
idft(t);
memcpy(o[dep] + l, t + 1, (lim - 1) << 2);
sub(o[dep][l + n - 1] = t[0]);
}
}
if(good) {
init(n << 2);
memcpy(val[dep] + l * 4 + 1, o[dep] + l, n << 2);
val[dep][l * 4] = 1;
if(n >= brute_limit) {
dft_last(val[dep] + l * 4);
memcpy(val[dep] + l * 4, dft_val, n << 2);
} else {
dft(val[dep] + l * 4);
}
}
}
inline void getans(u32 dep, u32 l, u32 r, u32 * a, u32 * cur, bool good, u32 inv) {
if(l >= m) return ;
u32 n = r - l;
if(n < brute_limit) {
static u32 g[N], B[N];
memcpy(B + 1, o[dep] + l, (n - 1) << 2);
*B = 1;
for(int i = 0;i < n;++i) {
a[i] = norm1(a[i]);
u64 sum = 0;
int j = 0;
for(;j + 3 <= i;j += 4) {
sum +=
(u64) a[j + 0] * B[i - j - 0] +
(u64) a[j + 1] * B[i - j - 1] +
(u64) a[j + 2] * B[i - j - 2] +
(u64) a[j + 3] * B[i - j - 3] ;
}
for(;j <= i;++j) sum += (u64) a[j] * B[i - j];
g[i] = sum % mod;
}
for(int i = l;i < r;++i) {
u32 & x = ans[i];
const u32 b1 = b[i];
const u32 b2 = :: b2[i];
const u32 b3 = (u64) b2 * b1 % mod;
const u32 b4 = :: b4[i];
x = ((u64) x * b4 + (u64) g[0 + 0] * b3 + (u64) g[0 + 1] * b2 + (u64) g[0 + 2] * b1 + g[0 + 3]) % mod;
x = ((u64) x * b4 + (u64) g[4 + 0] * b3 + (u64) g[4 + 1] * b2 + (u64) g[4 + 2] * b1 + g[4 + 3]) % mod;
if(n != 8) {
x = ((u64) x * b4 + (u64) g[8 + 0] * b3 + (u64) g[8 + 1] * b2 + (u64) g[8 + 2] * b1 + g[8 + 3]) % mod;
x = ((u64) x * b4 + (u64) g[12 + 0] * b3 + (u64) g[12 + 1] * b2 + (u64) g[12 + 2] * b1 + g[12 + 3]) % mod;
}
x = (u64) x * inv % mod;
}
return ;
}
static u32 c[N];
u32 mid0 = (l * 3 + r * 1) >> 2;
if(mid0 >= m) {
for(int i = 0;i != n / 4;++i) a[n + i] = a[n / 4 * 3 + i];
getans(dep + 1, l, mid0, a + n, cur + n, 1, inv);
return ;
}
u32 mid1 = (l * 2 + r * 2) >> 2;
u32 mid2 = (l * 1 + r * 3) >> 2;
u32* da = val[dep + 1] + l * 4;
u32* db = val[dep + 1] + mid0 * 4;
u32* dc = val[dep + 1] + mid1 * 4;
u32* dd = val[dep + 1] + mid2 * 4;
u32* dab = sgt[dep] + l * 2;
u32* dcd = sgt[dep] + mid1 * 2;
init(n);
dft(a);
prod(cur, a, dcd);
prod(c, cur, db);
inv = div_lim(inv);
idft_last_copy(c, a + n);
getans(dep + 1, l, mid0, a + n, cur + n, 1, inv);
if(mid0 >= m) return ;
init(n);
prod(c, cur, da);
idft_last_copy(c, a + n);
getans(dep + 1, mid0, mid1, a + n, cur + n, 1, inv);
if(mid1 >= m) return ;
init(n);
prod(cur, a, dab);
prod(c, cur, dd);
idft_last_copy(c, a + n);
getans(dep + 1, mid1, mid2, a + n, cur + n, 1, inv);
if(mid2 >= m) return ;
init(n);
prod(c, cur, dc);
idft_last_copy(c, a + n);
getans(dep + 1, mid2, r, a + n, cur + n, 1, inv);
}
inline void init_inv(const u32 * a, u32 * res, int n) {
static u32 pre[N];
*pre = *a;
for(int i = 1;i != n;++i) {
pre[i] = (u64) pre[i - 1] * a[i] % mod;
}
u32&all_inv = res[0] = pow(pre[n - 1], mod - 2);
for(int i = n - 1;i;--i) {
res[i] = (u64) all_inv * pre[i - 1] % mod;
all_inv = (u64) all_inv * a[i] % mod;
}
}
inline void naive() {
for(u32 i = m - 1;~i;--i) {
u32 x = b[i], &ret = ans[i] = 0;
for(int i = n - 1;~i;--i) {
ret = ((u64) ret * x + a[i]) % mod;
}
}
}
int main() {
cin >> n >> m;
for(M = 1;M < n || M < m;) M <<= 1;
const int max_ask = 1 << 18;
if(M > max_ask)
M = max_ask;
base_init(M);
for(u32 i = 0;i < n;++i) {
cin >> a[i];
}
for(u32 i = 0;i < m;++i) {
cin >> b[i];
}
if((u64) n * m < 50) naive();
else {
init(M);
fill(dfta, a, n);
dft(dfta);
for(int i = 1;i < lim;++i) rev[i] = rev[i >> 1] >> 1 | i % 2 * lim / 2;
const int GG = pow(3, mod / lim);
for(int i = 0, multi = 1;i < lim;++i) {
a[rev[lim - i]] = (u64) dfta[rev[i]] * multi % mod;
w[i] = multi;
multi = (u64) multi * GG % mod;
}
*a = *dfta;
u32 res = 0;
for(int i = 0;i < m;++i) {
power_b[i] = b[i];
}
static u32 og[N];
init(M), lim = m;
prod(power_b, power_b, power_b);
memcpy(b2, power_b, m << 2);
prod(power_b, power_b, power_b);
memcpy(b4, power_b, m << 2);
for(int i = 2;i < shift;++i) {
prod(power_b, power_b, power_b);
}
init(M);
for(int i = m;i < lim;++i) {
power_b[i] = 1;
}
for(int i = 0;i < lim;++i) {
power_b[i] = norm1(norm2(power_b[i] + mod - 1));
if(power_b[i] == 0) {
og[i] = b[i];
b[i] = 3;
}
}
solve(0, 0, M, 0);
init(M);
init_inv(dft_val, d, M);
prod(a, d, a);
idft(a);
for(u32 i = 0;i < M;++i) a[i] = norm2(a[i]);
static u32 cur[N << 1];
getans(0, 0, M, a, cur, 0, 1);
for(int i = 0;i < m;++i) {
if(power_b[i]) {
ans[i] = (u64) ans[i] * (mod - power_b[i]) % mod;
} else {
ans[i] = norm1(dfta[rev[get_index(og[i], M)]]);
}
}
}
for(u32 i = m - 1;~i;--i) {
cout << '\n' << ans[i];
}
}
详细
Test #1:
score: 20
Accepted
time: 0ms
memory: 52576kb
input:
100 94 575336069 33153864 90977269 80162592 25195235 334936051 108161572 14050526 356949084 797375084 805865808 286113858 995555121 938794582 458465004 379862532 563357556 293989886 273730531 13531923 113366106 126368162 405344025 443053020 475686818 734878619 338356543 661401660 834651229 527993675...
output:
940122667 397187437 905033404 346709388 146347009 49596361 125616024 966474950 693596552 162411542 248699477 217639076 254290825 963991654 951375739 431661136 587466850 933820245 135676159 683994808 821695954 675479292 463904298 15085475 183389374 976945620 668527277 98940366 909505808 904450031 968...
result:
ok 94 numbers
Test #2:
score: 20
Accepted
time: 0ms
memory: 75292kb
input:
5000 4999 410683245 925831211 726803342 144364185 955318244 291646122 334752751 893945905 484134283 203760731 533867267 813509277 491860093 413174124 584582617 594704162 976489328 978500071 196938934 628117769 169796671 858963950 562124570 582491326 647830593 238623335 20782490 674939336 656529076 2...
output:
683038054 713408290 776843174 52275065 602085453 905088100 991748340 720305324 831850056 296147844 79380797 882313010 941965313 987314872 363655479 380838721 51243733 165728533 592641557 679475455 651115426 60492203 787012426 247557193 136399242 484592897 908383514 735275879 648228244 443933835 5504...
result:
ok 4999 numbers
Test #3:
score: 20
Accepted
time: 13ms
memory: 81832kb
input:
30000 29995 536696866 881441742 356233606 594487396 991820796 695996817 7219464 149265950 843761437 329761701 260625152 80366362 598729314 133794090 12808683 67477659 320740422 878134577 879383179 940923483 660160621 18082378 886078389 524050341 35092018 137623841 988429688 258507355 138475726 75726...
output:
319541931 71523627 374970852 25715597 36244629 300490421 920015579 97305810 949802809 507599156 733158280 569689405 234576135 266469534 141265915 989761030 221701009 895284489 707865101 547950933 844193939 688358883 642066256 113618699 877631874 804170817 455115375 47621629 66017800 747477619 281472...
result:
ok 29995 numbers
Test #4:
score: 20
Accepted
time: 58ms
memory: 113784kb
input:
100000 99989 703908936 826436271 431732352 607460686 960390248 897906950 506352459 662618885 172508812 713410533 704313866 156459539 879660919 98030681 46358006 400134234 121190289 498201666 616888945 210891377 39623412 687350951 269444705 980768130 381802923 553892268 644461704 287608268 554761733 ...
output:
135579851 646286631 74078131 432534100 405499800 291350098 736555983 833523488 132230969 377599489 208993791 503865639 149603681 279216057 477463117 247401241 643979698 478954375 436185030 471378650 234144621 390722547 788177217 69823556 516048238 562200936 507083023 201497639 482025143 173466674 95...
result:
ok 99989 numbers
Test #5:
score: 0
Runtime Error
input:
1000000 999998 326289172 459965021 432610030 381274775 890620650 133203219 755508578 820410129 100497878 978894337 34545975 484258543 341383383 556328539 705716773 985485996 201697555 806763870 456757110 445252781 501965590 655584951 516373423 475444481 554722275 106826011 433893131 385018453 687541...