#include<bits/stdc++.h>
using namespace std;
using ll = long long;
struct pt{
ll x,y;
pt operator + (pt p) const{
return {x+p.x, y+p.y};
}
pt operator - (pt p) const{
return {x-p.x, y-p.y};
}
ll operator * (pt p)const{
return x * p.y - y * p.x;
}
};
ll sq(pt a,pt b){
return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
}
void reorder_polygon(vector<pt> & P){
size_t pos = 0;
for(size_t i = 1; i < P.size(); i++){
if(P[i].y < P[pos].y || (P[i].y == P[pos].y && P[i].x < P[pos].x))
pos = i;
}
rotate(P.begin(), P.begin() + pos, P.end());
}
vector<pt> sum(vector<pt> P, vector<pt> Q){
// the first vertex must be the lowest
reorder_polygon(P);
reorder_polygon(Q);
// we must ensure cyclic indexing
P.push_back(P[0]);
P.push_back(P[1]);
Q.push_back(Q[0]);
Q.push_back(Q[1]);
// main part
vector<pt> result;
size_t i = 0, j = 0;
while(i < P.size() - 2 || j < Q.size() - 2){
result.push_back(P[i] + Q[j]);
auto cross = (P[i + 1] - P[i]) * (Q[j + 1] - Q[j]);
if(cross >= 0 && i < P.size() - 2)
++i;
if(cross <= 0 && j < Q.size() - 2)
++j;
}
for (ll i = 0; i< result.size();i ++){
ll x = (i - 1 + result.size()) % result.size();
ll y = i;
ll z = (i + 1) % result.size();
assert(orientation(x,y,z) != 0);
}
return result;
}ll orientation(pt a, pt b, pt c) {
ll v = a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y);
if (v < 0) return -1; // clockwise
if (v > 0) return +1; // counter-clockwise
return 0;
}
bool cw(pt a, pt b, pt c, bool include_collinear) {
int o = orientation(a, b, c);
return o < 0 || (include_collinear && o == 0);
}
bool collinear(pt a, pt b, pt c) { return orientation(a, b, c) == 0; }
void convex_hull(vector<pt>& a, bool include_collinear = false) {
pt p0 = *min_element(a.begin(), a.end(), [](pt a, pt b) {
return make_pair(a.y, a.x) < make_pair(b.y, b.x);
});
sort(a.begin(), a.end(), [&p0](const pt& a, const pt& b) {
int o = orientation(p0, a, b);
if (o == 0)
return (p0.x-a.x)*(p0.x-a.x) + (p0.y-a.y)*(p0.y-a.y)
< (p0.x-b.x)*(p0.x-b.x) + (p0.y-b.y)*(p0.y-b.y);
return o < 0;
});
if (include_collinear) {
int i = (int)a.size()-1;
while (i >= 0 && collinear(p0, a[i], a.back())) i--;
reverse(a.begin()+i+1, a.end());
}
vector<pt> st;
for (int i = 0; i < (int)a.size(); i++) {
while (st.size() > 1 && !cw(st[st.size()-2], st.back(), a[i], include_collinear))
st.pop_back();
st.push_back(a[i]);
}
a = st;
reverse(a.begin(),a.end());
}
const ll MAXN = 5e4;
ll n,m;
vector <ll> g[MAXN + 100];
ll pa[MAXN + 100];
bool in[MAXN + 100];
struct edge{
ll u,v,a,b;
};
ll depth[MAXN + 100];
edge all[MAXN * 5 + 100];
ll nxt(ll u, edge x){
return (x.u == u?x.v:x.u);
}
vector <pt> tmp;
vector <vector <pt> > sex;
struct pq{
vector <pt> a;
bool operator < (const pq &p)const {
return a.size() > p.a.size();
}
};
priority_queue <pq> q;
void dfs(ll u){
//cout<<u<<'\n';
for (auto id:g[u]){
auto v = nxt(u,all[id]);
if (!in[v]){
pa[v] = id;
in[v] = 1;
depth[v] = depth[u] + 1;
//cout<<id<<' '<<u<<' '<<v<<'\n';
dfs(v);
}
if (in[v]){
if (depth[v] > depth[u] + 1){
ll cur = v;
tmp.clear();
tmp.push_back({all[id].a,all[id].b});
while (cur != u){
tmp.push_back({all[pa[cur]].a,all[pa[cur]].b});
cur = nxt(cur,all[pa[cur]]);
}
convex_hull(tmp);
sex.push_back(tmp);
}
}
}
}ll sum_a,sum_b;
int main(){
ios_base::sync_with_stdio(0);cin.tie(nullptr);cout.tie(nullptr);
cin>>n>>m;
sum_a = sum_b = 0;
for (ll i = 1;i <= m;i ++){
cin>>all[i].u>>all[i].v>>all[i].a>>all[i].b;
g[all[i].u].push_back(i);
g[all[i].v].push_back(i);
sum_a += all[i].a;
sum_b += all[i].b;
}
in[1] = 1;
dfs(1);
ll ans = sum_a * sum_b;
for (auto x:sex){
q.push({x});
}
while (q.size() > 1){
auto u = q.top();
q.pop();
auto v = q.top();
q.pop();
auto tmp = sum(u.a,v.a);
/*for (auto x:tmp){
cout<<x.x<<' '<<x.y<<'\n';
}*/
q.push({tmp});
}
if (q.size()){
vector <pt> minkowski = q.top().a;
/*for (auto x:minkowski){
cout<<x.x<<' '<<x.y<<'\n';
}*/
for (auto x:minkowski){
ans = min(ans,(sum_a - x.x) * (sum_b - x.y));
}
}
cout<<ans<<'\n';
return 0;
}