QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#193035 | #7517. Flying Ship Story | ucup-team112# | AC ✓ | 347ms | 3592kb | C++17 | 63.2kb | 2023-09-30 16:13:38 | 2023-09-30 16:13:39 |
Judging History
answer
#pragma GCC target("avx2")
//#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#ifndef ATCODER_INTERNAL_BITOP_HPP
#define ATCODER_INTERNAL_BITOP_HPP 1
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#endif // ATCODER_INTERNAL_BITOP_HPP
#ifndef ATCODER_INTERNAL_MATH_HPP
#define ATCODER_INTERNAL_MATH_HPP 1
#include <utility>
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast moduler by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m`
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const {
return _m;
}
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
for (long long a : {2, 7, 61}) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#endif // ATCODER_INTERNAL_MATH_HPP
#ifndef ATCODER_INTERNAL_QUEUE_HPP
#define ATCODER_INTERNAL_QUEUE_HPP 1
#include <vector>
namespace atcoder {
namespace internal {
template <class T>
struct simple_queue {
std::vector<T> payload;
int pos = 0;
void reserve(int n) {
payload.reserve(n);
}
int size() const {
return int(payload.size()) - pos;
}
bool empty() const {
return pos == int(payload.size());
}
void push(const T &t) {
payload.push_back(t);
}
T &front() {
return payload[pos];
}
void clear() {
payload.clear();
pos = 0;
}
void pop() {
pos++;
}
};
} // namespace internal
} // namespace atcoder
#endif // ATCODER_INTERNAL_QUEUE_HPP
#ifndef ATCODER_INTERNAL_SCC_HPP
#define ATCODER_INTERNAL_SCC_HPP 1
#include <algorithm>
#include <utility>
#include <vector>
namespace atcoder {
namespace internal {
template <class E>
struct csr {
std::vector<int> start;
std::vector<E> elist;
csr(int n, const std::vector<std::pair<int, E>> &edges) : start(n + 1), elist(edges.size()) {
for (auto e : edges) {
start[e.first + 1]++;
}
for (int i = 1; i <= n; i++) {
start[i] += start[i - 1];
}
auto counter = start;
for (auto e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
// Reference:
// R. Tarjan,
// Depth-First Search and Linear Graph Algorithms
struct scc_graph {
public:
scc_graph(int n) : _n(n) {}
int num_vertices() {
return _n;
}
void add_edge(int from, int to) {
edges.push_back({from, {to}});
}
// @return pair of (# of scc, scc id)
std::pair<int, std::vector<int>> scc_ids() {
auto g = csr<edge>(_n, edges);
int now_ord = 0, group_num = 0;
std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
visited.reserve(_n);
auto dfs = [&](auto self, int v) -> void {
low[v] = ord[v] = now_ord++;
visited.push_back(v);
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto to = g.elist[i].to;
if (ord[to] == -1) {
self(self, to);
low[v] = std::min(low[v], low[to]);
} else {
low[v] = std::min(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (true) {
int u = visited.back();
visited.pop_back();
ord[u] = _n;
ids[u] = group_num;
if (u == v) break;
}
group_num++;
}
};
for (int i = 0; i < _n; i++) {
if (ord[i] == -1) dfs(dfs, i);
}
for (auto &x : ids) {
x = group_num - 1 - x;
}
return {group_num, ids};
}
std::vector<std::vector<int>> scc() {
auto ids = scc_ids();
int group_num = ids.first;
std::vector<int> counts(group_num);
for (auto x : ids.second) counts[x]++;
std::vector<std::vector<int>> groups(ids.first);
for (int i = 0; i < group_num; i++) {
groups[i].reserve(counts[i]);
}
for (int i = 0; i < _n; i++) {
groups[ids.second[i]].push_back(i);
}
return groups;
}
private:
int _n;
struct edge {
int to;
};
std::vector<std::pair<int, edge>> edges;
};
} // namespace internal
} // namespace atcoder
#endif // ATCODER_INTERNAL_SCC_HPP
#ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP
#define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;
template <class T>
using to_unsigned =
typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type;
#else
template <class T>
using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#endif // ATCODER_INTERNAL_TYPE_TRAITS_HPP
#ifndef ATCODER_MODINT_HPP
#define ATCODER_MODINT_HPP 1
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)> * = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() {
return m;
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T> * = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T> * = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) {
_v = ((unsigned int)(v) % umod());
}
unsigned int val() const {
return _v;
}
mint &operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint &operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint &operator+=(const mint &rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint &operator-=(const mint &rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint &operator*=(const mint &rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint &operator/=(const mint &rhs) {
return *this = *this * rhs.inv();
}
mint operator+() const {
return *this;
}
mint operator-() const {
return mint() - *this;
}
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() {
return m;
}
static constexpr bool prime = internal::is_prime<m>;
};
template <int id>
struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() {
return (int)(bt.umod());
}
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T> * = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T> * = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) {
_v = ((unsigned int)(v) % mod());
}
unsigned int val() const {
return _v;
}
mint &operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint &operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint &operator+=(const mint &rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint &operator-=(const mint &rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint &operator*=(const mint &rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint &operator/=(const mint &rhs) {
return *this = *this * rhs.inv();
}
mint operator+() const {
return *this;
}
mint operator-() const {
return mint() - *this;
}
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() {
return bt.umod();
}
};
template <int id>
internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#endif // ATCODER_MODINT_HPP
#ifndef ATCODER_CONVOLUTION_HPP
#define ATCODER_CONVOLUTION_HPP 1
#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#include <vector>
namespace atcoder {
namespace internal {
template <class mint, internal::is_static_modint_t<mint> * = nullptr>
void butterfly(std::vector<mint> &a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_e[i] = es[i] * now;
now *= ies[i];
}
}
for (int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint now = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * now;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
now *= sum_e[bsf(~(unsigned int)(s))];
}
}
}
template <class mint, internal::is_static_modint_t<mint> * = nullptr>
void butterfly_inv(std::vector<mint> &a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now;
now *= es[i];
}
}
for (int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint inow = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val();
}
inow *= sum_ie[bsf(~(unsigned int)(s))];
}
}
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint> * = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) {
if (n < m) {
std::swap(n, m);
std::swap(a, b);
}
std::vector<mint> ans(n + m - 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
return ans;
}
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value> * = nullptr>
std::vector<T> convolution(const std::vector<T> &a, const std::vector<T> &b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long> &a, const std::vector<long long> &b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
// B = 2^63, -B <= x, r(real value) < B
// (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
// r = c1[i] (mod MOD1)
// focus on MOD1
// r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
// r = x,
// x - M' + (0 or 2B),
// x - 2M' + (0, 2B or 4B),
// x - 3M' + (0, 2B, 4B or 6B) (without mod!)
// (r - x) = 0, (0)
// - M' + (0 or 2B), (1)
// -2M' + (0 or 2B or 4B), (2)
// -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
// we checked that
// ((1) mod MOD1) mod 5 = 2
// ((2) mod MOD1) mod 5 = 3
// ((3) mod MOD1) mod 5 = 4
long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
#endif // ATCODER_CONVOLUTION_HPP
#ifndef ATCODER_DSU_HPP
#define ATCODER_DSU_HPP 1
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
// Implement (union by size) + (path compression)
// Reference:
// Zvi Galil and Giuseppe F. Italiano,
// Data structures and algorithms for disjoint set union problems
struct dsu {
public:
dsu() : _n(0) {}
dsu(int n) : _n(n), parent_or_size(n, -1) {}
int merge(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
int x = leader(a), y = leader(b);
if (x == y) return x;
if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
parent_or_size[x] += parent_or_size[y];
parent_or_size[y] = x;
return x;
}
bool same(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
return leader(a) == leader(b);
}
int leader(int a) {
assert(0 <= a && a < _n);
if (parent_or_size[a] < 0) return a;
return parent_or_size[a] = leader(parent_or_size[a]);
}
int size(int a) {
assert(0 <= a && a < _n);
return -parent_or_size[leader(a)];
}
std::vector<std::vector<int>> groups() {
std::vector<int> leader_buf(_n), group_size(_n);
for (int i = 0; i < _n; i++) {
leader_buf[i] = leader(i);
group_size[leader_buf[i]]++;
}
std::vector<std::vector<int>> result(_n);
for (int i = 0; i < _n; i++) {
result[i].reserve(group_size[i]);
}
for (int i = 0; i < _n; i++) {
result[leader_buf[i]].push_back(i);
}
result.erase(std::remove_if(result.begin(), result.end(), [&](const std::vector<int> &v) { return v.empty(); }), result.end());
return result;
}
private:
int _n;
// root node: -1 * component size
// otherwise: parent
std::vector<int> parent_or_size;
};
} // namespace atcoder
#endif // ATCODER_DSU_HPP
#ifndef ATCODER_FENWICKTREE_HPP
#define ATCODER_FENWICKTREE_HPP 1
#include <cassert>
#include <vector>
namespace atcoder {
// Reference: https://en.wikipedia.org/wiki/Fenwick_tree
template <class T>
struct fenwick_tree {
using U = internal::to_unsigned_t<T>;
public:
fenwick_tree() : _n(0) {}
fenwick_tree(int n) : _n(n), data(n) {}
void add(int p, T x) {
assert(0 <= p && p < _n);
p++;
while (p <= _n) {
data[p - 1] += U(x);
p += p & -p;
}
}
T sum(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
return sum(r) - sum(l);
}
private:
int _n;
std::vector<U> data;
U sum(int r) {
U s = 0;
while (r > 0) {
s += data[r - 1];
r -= r & -r;
}
return s;
}
};
} // namespace atcoder
#endif // ATCODER_FENWICKTREE_HPP
#ifndef ATCODER_LAZYSEGTREE_HPP
#define ATCODER_LAZYSEGTREE_HPP 1
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
lazy_segtree(const std::vector<S> &v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() {
return d[1];
}
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)>
int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G>
int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)>
int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G>
int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) {
d[k] = op(d[2 * k], d[2 * k + 1]);
}
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
#endif // ATCODER_LAZYSEGTREE_HPP
#ifndef ATCODER_MATH_HPP
#define ATCODER_MATH_HPP 1
#include <algorithm>
#include <cassert>
#include <tuple>
#include <vector>
namespace atcoder {
long long pow_mod(long long x, long long n, int m) {
assert(0 <= n && 1 <= m);
if (m == 1) return 0;
internal::barrett bt((unsigned int)(m));
unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
while (n) {
if (n & 1) r = bt.mul(r, y);
y = bt.mul(y, y);
n >>= 1;
}
return r;
}
long long inv_mod(long long x, long long m) {
assert(1 <= m);
auto z = internal::inv_gcd(x, m);
assert(z.first == 1);
return z.second;
}
// (rem, mod)
std::pair<long long, long long> crt(const std::vector<long long> &r, const std::vector<long long> &m) {
assert(r.size() == m.size());
int n = int(r.size());
// Contracts: 0 <= r0 < m0
long long r0 = 0, m0 = 1;
for (int i = 0; i < n; i++) {
assert(1 <= m[i]);
long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
if (m0 < m1) {
std::swap(r0, r1);
std::swap(m0, m1);
}
if (m0 % m1 == 0) {
if (r0 % m1 != r1) return {0, 0};
continue;
}
// assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)
// (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
// r2 % m0 = r0
// r2 % m1 = r1
// -> (r0 + x*m0) % m1 = r1
// -> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1)
// -> x = (r1 - r0) / g * inv(u0) (mod u1)
// im = inv(u0) (mod u1) (0 <= im < u1)
long long g, im;
std::tie(g, im) = internal::inv_gcd(m0, m1);
long long u1 = (m1 / g);
// |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
if ((r1 - r0) % g) return {0, 0};
// u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
long long x = (r1 - r0) / g % u1 * im % u1;
// |r0| + |m0 * x|
// < m0 + m0 * (u1 - 1)
// = m0 + m0 * m1 / g - m0
// = lcm(m0, m1)
r0 += x * m0;
m0 *= u1; // -> lcm(m0, m1)
if (r0 < 0) r0 += m0;
}
return {r0, m0};
}
long long floor_sum(long long n, long long m, long long a, long long b) {
long long ans = 0;
if (a >= m) {
ans += (n - 1) * n * (a / m) / 2;
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
long long y_max = (a * n + b) / m, x_max = (y_max * m - b);
if (y_max == 0) return ans;
ans += (n - (x_max + a - 1) / a) * y_max;
ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
return ans;
}
} // namespace atcoder
#endif // ATCODER_MATH_HPP
#ifndef ATCODER_MAXFLOW_HPP
#define ATCODER_MAXFLOW_HPP 1
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
template <class Cap>
struct mf_graph {
public:
mf_graph() : _n(0) {}
mf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
g[from].push_back(_edge{to, int(g[to].size()), cap});
g[to].push_back(_edge{from, int(g[from].size()) - 1, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result;
for (int i = 0; i < m; i++) {
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto &_e = g[pos[i].first][pos[i].second];
auto &_re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
std::vector<int> level(_n), iter(_n);
internal::simple_queue<int> que;
auto bfs = [&]() {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int &i = iter[v]; i < int(g[v].size()); i++) {
_edge &e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d = self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) break;
}
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
std::fill(iter.begin(), iter.end(), 0);
while (flow < flow_limit) {
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
}
return flow;
}
std::vector<bool> min_cut(int s) {
std::vector<bool> visited(_n);
internal::simple_queue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
#endif // ATCODER_MAXFLOW_HPP
#ifndef ATCODER_MINCOSTFLOW_HPP
#define ATCODER_MINCOSTFLOW_HPP 1
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
template <class Cap, class Cost>
struct mcf_graph {
public:
mcf_graph() {}
mcf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{
pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result(m);
for (int i = 0; i < m; i++) {
result[i] = get_edge(i);
}
return result;
}
std::pair<Cap, Cost> flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
return slope(s, t, flow_limit).back();
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
// variants (C = maxcost):
// -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
// reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
std::vector<Cost> dual(_n, 0), dist(_n);
std::vector<int> pv(_n), pe(_n);
std::vector<bool> vis(_n);
auto dual_ref = [&]() {
std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max());
std::fill(pv.begin(), pv.end(), -1);
std::fill(pe.begin(), pe.end(), -1);
std::fill(vis.begin(), vis.end(), false);
struct Q {
Cost key;
int to;
bool operator<(Q r) const {
return key > r.key;
}
};
std::priority_queue<Q> que;
dist[s] = 0;
que.push(Q{0, s});
while (!que.empty()) {
int v = que.top().to;
que.pop();
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
// dist[v] = shortest(s, v) + dual[s] - dual[v]
// dist[v] >= 0 (all reduced cost are positive)
// dist[v] <= (n-1)C
for (int i = 0; i < int(g[v].size()); i++) {
auto e = g[v][i];
if (vis[e.to] || !e.cap) continue;
// |-dual[e.to] + dual[v]| <= (n-1)C
// cost <= C - -(n-1)C + 0 = nC
Cost cost = e.cost - dual[e.to] + dual[v];
if (dist[e.to] - dist[v] > cost) {
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push(Q{dist[e.to], e.to});
}
}
}
if (!vis[t]) {
return false;
}
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
// dual[v] = dual[v] - dist[t] + dist[v]
// = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
// = - shortest(s, t) + dual[t] + shortest(s, v)
// = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
dual[v] -= dist[t] - dist[v];
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost = -1;
std::vector<std::pair<Cap, Cost>> result;
result.push_back({flow, cost});
while (flow < flow_limit) {
if (!dual_ref()) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = pv[v]) {
c = std::min(c, g[pv[v]][pe[v]].cap);
}
for (int v = t; v != s; v = pv[v]) {
auto &e = g[pv[v]][pe[v]];
e.cap -= c;
g[v][e.rev].cap += c;
}
Cost d = -dual[s];
flow += c;
cost += c * d;
if (prev_cost == d) {
result.pop_back();
}
result.push_back({flow, cost});
prev_cost = cost;
}
return result;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
#endif // ATCODER_MINCOSTFLOW_HPP
#ifndef ATCODER_SCC_HPP
#define ATCODER_SCC_HPP 1
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
struct scc_graph {
public:
scc_graph() : internal(0) {}
scc_graph(int n) : internal(n) {}
void add_edge(int from, int to) {
int n = internal.num_vertices();
assert(0 <= from && from < n);
assert(0 <= to && to < n);
internal.add_edge(from, to);
}
std::vector<std::vector<int>> scc() {
return internal.scc();
}
private:
internal::scc_graph internal;
};
} // namespace atcoder
#endif // ATCODER_SCC_HPP
#ifndef ATCODER_SEGTREE_HPP
#define ATCODER_SEGTREE_HPP 1
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)()>
struct segtree {
public:
segtree() : segtree(0) {}
segtree(int n) : segtree(std::vector<S>(n, e())) {}
segtree(const std::vector<S> &v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() {
return d[1];
}
template <bool (*f)(S)>
int max_right(int l) {
return max_right(l, [](S x) { return f(x); });
}
template <class F>
int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)>
int min_left(int r) {
return min_left(r, [](S x) { return f(x); });
}
template <class F>
int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) {
d[k] = op(d[2 * k], d[2 * k + 1]);
}
};
} // namespace atcoder
#endif // ATCODER_SEGTREE_HPP
#ifndef ATCODER_STRING_HPP
#define ATCODER_STRING_HPP 1
#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>
namespace atcoder {
namespace internal {
std::vector<int> sa_naive(const std::vector<int> &s) {
int n = int(s.size());
std::vector<int> sa(n);
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(), [&](int l, int r) {
if (l == r) return false;
while (l < n && r < n) {
if (s[l] != s[r]) return s[l] < s[r];
l++;
r++;
}
return l == n;
});
return sa;
}
std::vector<int> sa_doubling(const std::vector<int> &s) {
int n = int(s.size());
std::vector<int> sa(n), rnk = s, tmp(n);
std::iota(sa.begin(), sa.end(), 0);
for (int k = 1; k < n; k *= 2) {
auto cmp = [&](int x, int y) {
if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
int rx = x + k < n ? rnk[x + k] : -1;
int ry = y + k < n ? rnk[y + k] : -1;
return rx < ry;
};
std::sort(sa.begin(), sa.end(), cmp);
tmp[sa[0]] = 0;
for (int i = 1; i < n; i++) {
tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
}
std::swap(tmp, rnk);
}
return sa;
}
// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int> &s, int upper) {
int n = int(s.size());
if (n == 0) return {};
if (n == 1) return {0};
if (n == 2) {
if (s[0] < s[1]) {
return {0, 1};
} else {
return {1, 0};
}
}
if (n < THRESHOLD_NAIVE) {
return sa_naive(s);
}
if (n < THRESHOLD_DOUBLING) {
return sa_doubling(s);
}
std::vector<int> sa(n);
std::vector<bool> ls(n);
for (int i = n - 2; i >= 0; i--) {
ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
}
std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
for (int i = 0; i < n; i++) {
if (!ls[i]) {
sum_s[s[i]]++;
} else {
sum_l[s[i] + 1]++;
}
}
for (int i = 0; i <= upper; i++) {
sum_s[i] += sum_l[i];
if (i < upper) sum_l[i + 1] += sum_s[i];
}
auto induce = [&](const std::vector<int> &lms) {
std::fill(sa.begin(), sa.end(), -1);
std::vector<int> buf(upper + 1);
std::copy(sum_s.begin(), sum_s.end(), buf.begin());
for (auto d : lms) {
if (d == n) continue;
sa[buf[s[d]]++] = d;
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
sa[buf[s[n - 1]]++] = n - 1;
for (int i = 0; i < n; i++) {
int v = sa[i];
if (v >= 1 && !ls[v - 1]) {
sa[buf[s[v - 1]]++] = v - 1;
}
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
for (int i = n - 1; i >= 0; i--) {
int v = sa[i];
if (v >= 1 && ls[v - 1]) {
sa[--buf[s[v - 1] + 1]] = v - 1;
}
}
};
std::vector<int> lms_map(n + 1, -1);
int m = 0;
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms_map[i] = m++;
}
}
std::vector<int> lms;
lms.reserve(m);
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms.push_back(i);
}
}
induce(lms);
if (m) {
std::vector<int> sorted_lms;
sorted_lms.reserve(m);
for (int v : sa) {
if (lms_map[v] != -1) sorted_lms.push_back(v);
}
std::vector<int> rec_s(m);
int rec_upper = 0;
rec_s[lms_map[sorted_lms[0]]] = 0;
for (int i = 1; i < m; i++) {
int l = sorted_lms[i - 1], r = sorted_lms[i];
int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
bool same = true;
if (end_l - l != end_r - r) {
same = false;
} else {
while (l < end_l) {
if (s[l] != s[r]) {
break;
}
l++;
r++;
}
if (l == n || s[l] != s[r]) same = false;
}
if (!same) rec_upper++;
rec_s[lms_map[sorted_lms[i]]] = rec_upper;
}
auto rec_sa = sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);
for (int i = 0; i < m; i++) {
sorted_lms[i] = lms[rec_sa[i]];
}
induce(sorted_lms);
}
return sa;
}
} // namespace internal
std::vector<int> suffix_array(const std::vector<int> &s, int upper) {
assert(0 <= upper);
for (int d : s) {
assert(0 <= d && d <= upper);
}
auto sa = internal::sa_is(s, upper);
return sa;
}
template <class T>
std::vector<int> suffix_array(const std::vector<T> &s) {
int n = int(s.size());
std::vector<int> idx(n);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
std::vector<int> s2(n);
int now = 0;
for (int i = 0; i < n; i++) {
if (i && s[idx[i - 1]] != s[idx[i]]) now++;
s2[idx[i]] = now;
}
return internal::sa_is(s2, now);
}
std::vector<int> suffix_array(const std::string &s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return internal::sa_is(s2, 255);
}
// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T> &s, const std::vector<int> &sa) {
int n = int(s.size());
assert(n >= 1);
std::vector<int> rnk(n);
for (int i = 0; i < n; i++) {
rnk[sa[i]] = i;
}
std::vector<int> lcp(n - 1);
int h = 0;
for (int i = 0; i < n; i++) {
if (h > 0) h--;
if (rnk[i] == 0) continue;
int j = sa[rnk[i] - 1];
for (; j + h < n && i + h < n; h++) {
if (s[j + h] != s[i + h]) break;
}
lcp[rnk[i] - 1] = h;
}
return lcp;
}
std::vector<int> lcp_array(const std::string &s, const std::vector<int> &sa) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return lcp_array(s2, sa);
}
// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T>
std::vector<int> z_algorithm(const std::vector<T> &s) {
int n = int(s.size());
if (n == 0) return {};
std::vector<int> z(n);
z[0] = 0;
for (int i = 1, j = 0; i < n; i++) {
int &k = z[i];
k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
while (i + k < n && s[k] == s[i + k]) k++;
if (j + z[j] < i + z[i]) j = i;
}
z[0] = n;
return z;
}
std::vector<int> z_algorithm(const std::string &s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return z_algorithm(s2);
}
} // namespace atcoder
#endif // ATCODER_STRING_HPP
#ifndef ATCODER_TWOSAT_HPP
#define ATCODER_TWOSAT_HPP 1
#include <cassert>
#include <vector>
namespace atcoder {
// Reference:
// B. Aspvall, M. Plass, and R. Tarjan,
// A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean
// Formulas
struct two_sat {
public:
two_sat() : _n(0), scc(0) {}
two_sat(int n) : _n(n), _answer(n), scc(2 * n) {}
void add_clause(int i, bool f, int j, bool g) {
assert(0 <= i && i < _n);
assert(0 <= j && j < _n);
scc.add_edge(2 * i + (f ? 0 : 1), 2 * j + (g ? 1 : 0));
scc.add_edge(2 * j + (g ? 0 : 1), 2 * i + (f ? 1 : 0));
}
bool satisfiable() {
auto id = scc.scc_ids().second;
for (int i = 0; i < _n; i++) {
if (id[2 * i] == id[2 * i + 1]) return false;
_answer[i] = id[2 * i] < id[2 * i + 1];
}
return true;
}
std::vector<bool> answer() {
return _answer;
}
private:
int _n;
std::vector<bool> _answer;
internal::scc_graph scc;
};
} // namespace atcoder
#endif // ATCODER_TWOSAT_HPP
#include <bits/stdc++.h>
#include <bitset>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <random>
#include <set>
#include <type_traits>
#include <unordered_map>
using namespace atcoder;
using namespace std;
using ll = long long;
#define rep(i, n, m) for (ll(i) = (n); (i) < (m); (i)++)
#define rrep(i, n, m) for (ll(i) = (n); (i) > (m); (i)--)
const ll mod = 998244353;
const ll inf = 1e9;
const ll INF = 1e18;
using mint = modint998244353;
using pll = pair<ll, ll>;
void pline(vector<ll> lis) {
rep(i, 0, lis.size()) {
printf("%d", lis[i]);
if (i != lis.size() - 1)
printf(" ");
else
printf("\n");
}
}
void pline(vector<mint> lis) {
rep(i, 0, lis.size()) {
printf("%d", lis[i].val());
if (i != lis.size() - 1)
printf(" ");
else
printf("\n");
}
}
void pline2(vector<ll> lis) {
rep(i, 0, lis.size()) {
printf("%lld", lis[i]);
if (i != lis.size() - 1)
printf("");
else
printf("\n");
}
}
void pline(vector<pair<ll, ll>> lis) {
rep(i, 0, lis.size()) {
printf("/%lld,%lld/", lis[i].first, lis[i].second);
if (i != lis.size() - 1)
printf(" ");
else
printf("\n");
}
}
/*
mint solve(ll state,vector<ll>& R,vector<ll>& B,map<ll,mint>& dic){
ll N = R.size();
if (dic.count(state)){
return dic[state];
}
vector<ll> unused;
rep(i,0,N){
if ( ((1<<i)&state) == 0 ){
unused.push_back(i);
}
}
rep
}*/
vector<ll> Sieve(ll n, ll mode = 0) {
vector<ll> plis(0);
vector<ll> divlis(n + 1, -1);
vector<ll> flag(n + 1, 1);
flag[0] = 0;
flag[1] = 0;
ll ind = 2;
while (ind <= n) {
if (flag[ind]) {
plis.push_back(ind);
ll ind2 = ind * ind;
while (ind2 <= n) {
flag[ind2] = 0;
divlis[ind2] = ind;
ind2 += ind;
}
}
ind += 1;
}
if (mode == 0) {
return plis;
} else {
return divlis;
}
}
struct ModFac {
private:
int n;
vector<mint> facs, invs;
public:
ModFac(int x) {
n = x;
facs.resize(n + 1);
invs.resize(n + 1);
mint f = 1;
facs[0] = f;
for (int i = 1; i < n + 1; i++) {
f *= i;
facs[i] = f;
}
mint g = f.inv();
invs[n] = g;
invs[0] = 1;
for (int i = n; i > 1; i--) {
g *= i;
invs[i - 1] = g;
}
}
mint getfac(int n) {
return facs[n];
}
mint getinv(int n) {
return invs[n];
}
mint nCr(int n, int r) {
return facs[n] * invs[n - r] * invs[r];
}
};
int main() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
ll tt;
cin >> tt;
vector<vector<ll>> top4;
ll last = 0;
rep(lp, 0, tt) {
ll qty;
cin >> qty;
if (qty == 1) {
ll x, y, w;
cin >> x >> y >> w;
x ^= last;
y ^= last;
w ^= last;
top4.push_back({w, x, y});
for (int i = top4.size() - 1; i > 0; i--) {
if (top4[i][0] > top4[i - 1][0]) {
swap(top4[i], top4[i - 1]);
} else {
break;
}
}
vector<vector<ll>> top4_new;
for (auto tup : top4) {
ll x = tup[1];
ll y = tup[2];
int xc = 0;
int yc = 0;
for (const auto &tup2 : top4_new) {
if (tup2[1] == x) xc++;
if (tup2[2] == y) yc++;
if (tup2[1] == x and tup2[2] == y) xc = 100;
}
if (xc < 2 and yc < 2) {
top4_new.push_back(tup);
}
if (top4_new.size() == 5) {
break;
}
}
swap(top4, top4_new);
} else {
ll x, y;
cin >> x >> y;
x ^= last;
y ^= last;
ll ans = 0;
for (const auto &tup : top4) {
// pline(tup);
if ((tup[1] != x) && (tup[2] != y)) {
ans = tup[0];
break;
}
}
cout << ans << '\n';
last = ans;
}
}
}
/*
w x y
2 4 5
1 2 3
2 2
3 7
*/
这程序好像有点Bug,我给组数据试试?
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3460kb
input:
5 1 2 3 1 1 4 5 2 2 2 2 2 3 7 2 3 4
output:
2 1 0
result:
ok 3 lines
Test #2:
score: 0
Accepted
time: 278ms
memory: 3520kb
input:
1000000 2 370943499 431961772 1 1 1 11995570 2 37566858 838793045 1 11995571 11995569 908148975 2 11995571 11995571 1 1 3 716821068 2 67877937 3 1 11995571 11995571 771898489 2 38381714 99749723 1 915818844 915818847 729541681 2 592361351 915818846 1 783627722 783627722 639375021 2 102203700 8636489...
output:
0 11995570 0 11995570 915818845 783627723 915818845 0 0 915818845 0 783627723 0 904468304 904468304 904468304 915818845 904468304 915818845 904468304 915818845 0 904468304 0 915818845 915818845 0 0 915818845 915818845 0 921710773 0 921710773 998138906 921710773 0 921710773 998138906 0 998138906 0 99...
result:
ok 500000 lines
Test #3:
score: 0
Accepted
time: 326ms
memory: 3492kb
input:
1000000 2 648544745 437316088 1 1 1 221075686 2 802693951 691188141 1 221075687 221075684 1036811136 2 771835961 178451319 1 820061031 820061031 560017372 2 829408420 820061028 1 293604539 293604539 699366423 2 293604539 293604539 1 1 2 610044241 2 50747012 885321059 1 942633132 942633132 603537610 ...
output:
0 221075686 820061030 293604538 0 942633133 942633133 27478144 820061030 820061030 900696946 27478144 942633133 942633133 0 772167494 27478144 891145650 900696946 772167494 891145650 918281274 772167494 772167494 772167494 772167494 772167494 942633133 918281274 891145650 918281274 891145650 8911456...
result:
ok 500000 lines
Test #4:
score: 0
Accepted
time: 320ms
memory: 3524kb
input:
1000000 2 488777832 43440411 1 441939805 62137297 1349 2 198318033 382339804 1 441938456 72190649 815 2 458351680 72190649 1 441938456 287971850 290 2 161496970 653240491 1 933968337 49827233 1142 2 441938231 49827233 1 623590902 306969890 440 2 441939805 144230480 1 441939265 480404387 11460 2 4419...
output:
0 1349 1349 1642 0 540 440 440 440 11992 4593 4228 9603 4228 12488 7139 4593 14051 14051 14051 16301 4593 20640 14051 34628 20640 34628 35421 34628 34628 49987 11225 17743 11225 17743 35421 17743 35421 17743 49987 56227 56227 11225 11225 56227 56227 56227 56227 56227 37643 37643 49987 37643 37643 21...
result:
ok 500000 lines
Test #5:
score: 0
Accepted
time: 334ms
memory: 3468kb
input:
1000000 2 300988902 687022441 1 363810072 24403398 289 2 441308798 688376935 1 628472989 502933923 685 2 628472989 24403175 1 405185660 444382475 5415 2 405185660 502933634 1 628472989 220347248 2326 2 405185885 151256307 1 38349408 55729241 318 2 996330001 736739645 1 628467867 508628958 4399 2 567...
output:
0 289 0 289 2103 5415 5415 2103 8914 10615 3349 3349 8956 3349 10129 10129 6943 15708 10615 15708 10615 15708 10615 16924 13341 13341 16924 16924 16924 40745 16924 21956 40745 12104 40745 20471 40745 40745 20471 40745 40745 63618 40745 63618 63618 18063 63618 63618 63618 79351 79351 79351 79351 6361...
result:
ok 500000 lines
Test #6:
score: 0
Accepted
time: 335ms
memory: 3484kb
input:
1000000 2 111806459 80284370 1 796602332 100051686 438 2 286632803 842428594 1 34142446 621400092 731 2 53723669 621400092 1 449442772 930459341 4955 2 443764325 137040488 1 748083857 223767926 8188 2 969939167 515353275 1 989422739 346378721 4227 2 748083857 930463126 1 103490800 749046598 2463 2 3...
output:
0 438 438 4845 4845 877 4845 3345 3345 3345 3345 6408 6416 7738 3656 3656 11278 3656 13839 11278 33567 33567 5723 33567 28274 28274 8997 11278 48613 33567 8997 11278 8997 8997 13336 26477 48613 13336 48613 13336 13336 48613 26477 26766 13336 73778 73778 58976 42110 42110 22285 73778 73778 73778 7377...
result:
ok 500000 lines
Test #7:
score: 0
Accepted
time: 337ms
memory: 3500kb
input:
1000000 2 718033726 616016120 1 665760898 359791620 366 2 665760898 204722547 1 452321281 333162973 3799 2 60737187 883719093 1 452325078 2420293 2737 2 464822496 333162250 1 897358098 996437487 472 2 795171894 333163963 1 455003715 996437047 3228 2 787981736 996272822 1 882324943 996435806 3458 2 4...
output:
0 0 3799 1126 1470 3799 1470 1470 705 7238 3252 2338 3252 10340 10340 8986 5114 5114 5114 13813 17199 10340 18118 18118 21931 21931 5114 21931 21931 21931 29195 29195 15488 35715 31726 57783 15488 33759 33759 57783 15488 15488 68258 68258 15488 68258 33759 87915 33759 15488 15488 33759 33759 68258 1...
result:
ok 500000 lines
Test #8:
score: 0
Accepted
time: 340ms
memory: 3528kb
input:
1000000 2 78038813 250486402 1 695391094 534886695 519 2 304811423 718140553 1 158043817 277922962 304 2 803420509 772623626 1 856526470 455200407 6075 2 856526470 211646382 1 589013496 642317455 2046 2 856526470 781887716 1 3773409 455199081 7129 2 489372518 198447772 1 695389286 769439586 7294 2 4...
output:
0 519 823 823 1225 7952 1225 7952 5260 3036 7952 7952 5260 7952 7952 15312 15312 7952 15312 15312 16011 16011 16011 10390 15174 15312 16011 16011 16011 21629 37469 44676 21629 11376 21629 44676 44676 11376 21629 63531 14384 21629 14384 62379 62379 17290 62379 62379 63531 17290 62379 63531 63531 6353...
result:
ok 500000 lines
Test #9:
score: 0
Accepted
time: 341ms
memory: 3480kb
input:
1000000 2 448731011 335554536 1 457642829 423410972 124853177 2 528804845 610815786 1 670970781 30756690 76799653 2 473303284 30756690 1 738493740 200328550 305876016 2 831084154 333999700 1 216806 432769366 522523742 2 886066341 327404401 1 159145853 823055029 119343195 2 1044367644 823055029 1 374...
output:
0 124853177 0 305876016 305876016 220092526 354829419 65193244 385224642 494032668 494032668 494032668 89190365 884278417 804675940 129416032 804675940 494032668 494032668 884278417 804675940 884278417 494032668 884278417 884278417 884278417 494032668 192215999 494032668 494032668 494032668 49403266...
result:
ok 500000 lines
Test #10:
score: 0
Accepted
time: 336ms
memory: 3492kb
input:
1000000 2 153972288 431605536 1 730858411 118081523 61101718 2 597918421 118081523 1 302485264 707599297 51792879 2 666912261 118081523 1 553921748 222588592 19087596 2 679888964 691753006 1 539454520 901424574 281552883 2 780874631 872495545 1 820988875 320547849 114233419 2 245557822 320547849 1 7...
output:
0 0 51792879 37030659 318582000 318582000 338836667 224502837 61101718 481847491 481847491 481847491 814391513 208713218 814391513 695505776 246189170 814391513 695505776 695505776 814391513 814391513 246189170 481847491 481847491 481847491 481847491 695505776 481847491 814391513 481847491 814391513...
result:
ok 500000 lines
Test #11:
score: 0
Accepted
time: 333ms
memory: 3480kb
input:
1000000 2 1756180 842292352 1 749493858 260143625 424 2 985509420 740477290 1 636015984 920180987 292 2 699490704 38801725 1 466966973 773251960 814 2 373096904 461012336 1 199555803 702448186 586 2 466967187 942269722 1 43386889 661927555 758 2 368307964 767725271 1 466967371 652656431 1610 2 46696...
output:
0 424 424 646 424 862 424 3755 1300 3755 12705 1926 1926 3755 2616 3755 3755 24100 3755 2616 5891 2616 5891 4151 5891 5891 41248 10033 5891 41248 41248 41248 16593 15320 5680 16593 8111 8111 41248 8111 15320 41248 8111 31591 9024 15320 15320 15320 9024 74059 74059 24087 24087 31591 31591 74059 74059...
result:
ok 500000 lines
Test #12:
score: 0
Accepted
time: 347ms
memory: 3592kb
input:
1000000 2 418305042 944656569 1 360849688 469845427 1126 2 347770605 7106815 1 264338323 253721049 1533 2 940700400 34983084 1 360850814 469844437 2067 2 360850814 443687475 1 111887484 469845032 238 2 303710556 850291600 1 579127458 578143118 3253 2 560575977 302928526 1 264336256 211480818 1794 2 ...
output:
0 1126 1126 411 3189 3189 3189 2935 7725 7725 192 1775 3421 3189 3189 3189 1775 6608 6608 7725 7725 37311 6608 37311 6608 5714 5714 6608 5714 7725 6608 37311 14524 15851 15851 37311 21334 5714 5714 5714 37311 7210 7210 21334 21334 7210 21334 21334 19271 37311 19271 7210 7210 19271 19271 19271 13320 ...
result:
ok 500000 lines
Test #13:
score: 0
Accepted
time: 324ms
memory: 3496kb
input:
1000000 2 804115895 2661276 1 180734654 156813060 300 2 253741442 156813060 1 472942411 314635336 231 2 87507808 156813060 1 349452733 767165 1911 2 349452733 156813283 1 472942508 217877748 416 2 349452733 96729439 1 472942092 59977469 119 2 472942092 767261 1 945007344 767350 1508 2 274364371 3192...
output:
0 0 231 231 327 300 1936 2204 2204 1936 3744 3744 3744 2867 2867 1759 6346 6346 6346 6346 1759 6346 6346 4476 6346 4476 4476 16555 4476 4476 6022 10043 10043 10043 16555 6022 6022 16555 16555 6022 67548 6022 12030 12030 67548 12030 18086 33442 6022 33442 33442 6022 20211 33442 67548 33442 67548 6754...
result:
ok 500000 lines
Test #14:
score: 0
Accepted
time: 323ms
memory: 3528kb
input:
1000000 2 103013178 687790552 1 247109364 453485616 417 2 247109364 560197 1 301015532 533028723 397 2 61889261 157540231 1 247109461 730927600 167 2 247109461 292968626 1 781831237 475527032 758 2 715010644 138797384 1 301015703 42413404 459 2 67760275 589415471 1 665349790 944974343 285 2 78183185...
output:
0 0 417 397 891 891 688 3230 688 3230 1253 9794 1253 3230 3230 9794 3230 9794 5992 3230 3230 3230 5992 5992 5992 13944 23480 23480 4013 13944 23480 23480 4013 26211 42117 42117 12844 12844 60131 26211 7996 26211 26211 26211 9971 26211 26211 60131 60131 13482 13482 12149 12149 13482 13482 13482 12149...
result:
ok 500000 lines
Test #15:
score: 0
Accepted
time: 335ms
memory: 3560kb
input:
1000000 2 571465209 203365081 1 466753949 726269346 120489823 2 466753949 369486616 1 466753949 601231229 251422109 2 466753949 726269346 1 131434952 337438435 82190750 2 466753949 726269346 1 520104744 284870525 55655366 2 421460934 74147403 1 310575874 450921342 743860879 2 355367936 450921342 1 1...
output:
0 0 0 82190750 251422109 0 581570322 581570322 581570322 150072005 150072005 124030323 581570322 581570322 124030323 251422109 251422109 124030323 169831141 251422109 124030323 882989709 882989709 169831141 169831141 169831141 882989709 169831141 124392464 169831141 124392464 169831141 882989709 882...
result:
ok 500000 lines