QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#189640#4907. djq 学生物sigma42550 1459ms78660kbC++2316.5kb2023-09-27 18:57:492023-09-27 18:57:50

Judging History

你现在查看的是最新测评结果

  • [2023-09-27 18:57:50]
  • 评测
  • 测评结果:50
  • 用时:1459ms
  • 内存:78660kb
  • [2023-09-27 18:57:49]
  • 提交

answer

// #pragma GCC target("avx,avx2")
// #pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
#define rep(i,n) for(int i=0;i<int(n);i++)
#define rep1(i,n) for(int i=1;i<=int(n);i++)
#define per(i,n) for(int i=int(n)-1;i>=0;i--)
#define per1(i,n) for(int i=int(n);i>0;i--)
#define all(c) c.begin(),c.end()
#define si(x) int(x.size())
#define pb push_back
#define eb emplace_back
#define fs first
#define sc second
template<class T> using V = vector<T>;
template<class T> using VV = vector<vector<T>>;
template<class T,class U> bool chmax(T& x, U y){
	if(x<y){ x=y; return true; }
	return false;
}
template<class T,class U> bool chmin(T& x, U y){
	if(y<x){ x=y; return true; }
	return false;
}
template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}
template<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}
template<class T>
V<T> Vec(size_t a) {
    return V<T>(a);
}
template<class T, class... Ts>
auto Vec(size_t a, Ts... ts) {
  return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));
}
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){
	return o<<"("<<p.fs<<","<<p.sc<<")";
}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){
	o<<"{";
	for(const T& v:vc) o<<v<<",";
	o<<"}";
	return o;
}
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }

#ifdef LOCAL
#define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl
void dmpr(ostream& os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
	os<<t<<" ~ ";
	dmpr(os,args...);
}
#define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__)
#define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {";  \
	for(auto v: x) cerr << v << ","; cerr << "}" << endl;
#else
#define show(x) void(0)
#define dump(x) void(0)
#define shows(...) void(0)
#endif

template<class D> D divFloor(D a, D b){
	return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);
}
template<class D> D divCeil(D a, D b) {
	return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);
}

template<unsigned int mod_>
struct ModInt{
	using uint = unsigned int;
	using ll = long long;
	using ull = unsigned long long;

	constexpr static uint mod = mod_;

	uint v;
	ModInt():v(0){}
	ModInt(ll _v):v(normS(_v%mod+mod)){}
	explicit operator bool() const {return v!=0;}
	static uint normS(const uint &x){return (x<mod)?x:x-mod;}		// [0 , 2*mod-1] -> [0 , mod-1]
	static ModInt make(const uint &x){ModInt m; m.v=x; return m;}
	ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));}
	ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));}
	ModInt operator-() const { return make(normS(mod-v)); }
	ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);}
	ModInt operator/(const ModInt& b) const { return *this*b.inv();}
	ModInt& operator+=(const ModInt& b){ return *this=*this+b;}
	ModInt& operator-=(const ModInt& b){ return *this=*this-b;}
	ModInt& operator*=(const ModInt& b){ return *this=*this*b;}
	ModInt& operator/=(const ModInt& b){ return *this=*this/b;}
	ModInt& operator++(int){ return *this=*this+1;}
	ModInt& operator--(int){ return *this=*this-1;}
	template<class T> friend ModInt operator+(T a, const ModInt& b){ return (ModInt(a) += b);}
	template<class T> friend ModInt operator-(T a, const ModInt& b){ return (ModInt(a) -= b);}
	template<class T> friend ModInt operator*(T a, const ModInt& b){ return (ModInt(a) *= b);}
	template<class T> friend ModInt operator/(T a, const ModInt& b){ return (ModInt(a) /= b);}
	ModInt pow(ll p) const {
		if(p<0) return inv().pow(-p);
		ModInt a = 1;
		ModInt x = *this;
		while(p){
			if(p&1) a *= x;
			x *= x;
			p >>= 1;
		}
		return a;
	}
	ModInt inv() const {		// should be prime
		return pow(mod-2);
	}
	// ll extgcd(ll a,ll b,ll &x,ll &y) const{
	// 	ll p[]={a,1,0},q[]={b,0,1};
	// 	while(*q){
	// 		ll t=*p/ *q;
	// 		rep(i,3) swap(p[i]-=t*q[i],q[i]);
	// 	}
	// 	if(p[0]<0) rep(i,3) p[i]=-p[i];
	// 	x=p[1],y=p[2];
	// 	return p[0];
	// }
	// ModInt inv() const {
	// 	ll x,y;
	// 	extgcd(v,mod,x,y);
	// 	return make(normS(x+mod));
	// }

	bool operator==(const ModInt& b) const { return v==b.v;}
	bool operator!=(const ModInt& b) const { return v!=b.v;}
	bool operator<(const ModInt& b) const { return v<b.v;}
	friend istream& operator>>(istream &o,ModInt& x){
		ll tmp;
		o>>tmp;
		x=ModInt(tmp);
		return o;
	}
	friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;}
};
using mint = ModInt<998244353>;
//using mint = ModInt<1000000007>;

template<class T>
struct Matrix: public vector<vector<T>>{

	Matrix(){}
	explicit Matrix(int n) : vector<vector<T>>(n,vector<T>(n)){}
	Matrix(int h,int w) : vector<vector<T>>(h,vector<T>(w)){}
	Matrix(const vector<vector<T>>& a):vector<vector<T>>(a){}

	static Matrix E(int n){
		Matrix a(n,n);
		rep(i,n) a[i][i] = 1;
		return a;
	}
	int h() const { return (*this).size(); }
	int w() const { return (*this)[0].size(); }

	Matrix operator+(const Matrix& r) const {
		assert(h() == r.h() && w() == r.w());
		int H = h(), W = w();
		Matrix z(H,W);
		rep(i,H) rep(j,W) z[i][j] = (*this)[i][j] + r[i][j];
		return z;
	}
	Matrix operator-(const Matrix& r) const {
		assert(h() == r.h() && w() == r.w());
		int H = h(), W = w();
		Matrix z(H,W);
		rep(i,H) rep(j,W) z[i][j] = (*this)[i][j] - r[i][j];
		return z;
	}
	Matrix operator*(const Matrix& r) const {
		assert(w() == r.h());
		int A = h(), B = w(), C = r.w();
		Matrix z(A,C);
		rep(i,A) rep(k,B) rep(j,C) z[i][j] += (*this)[i][k] * r[k][j];
		return z;
	}
	Matrix& operator+=(const Matrix& r){return (*this)=(*this)+r;}
	Matrix& operator-=(const Matrix& r){return (*this)=(*this)-r;}
	Matrix& operator*=(const Matrix& r){return (*this)=(*this)*r;}

	Matrix& operator*=(const T& r){
		rep(i,h()) rep(j,w()) (*this)[i][j] *= r;
		return *this;
	}
	Matrix operator*(const T& r) const {
		return Matrix(*this) *= r;
	}

	Matrix pow(ll p) const {
		assert(h() == w());
		Matrix res = E(h());
		Matrix x = *this;
		while(p){
			if(p&1) res *= x;
			x *= x;
			p >>= 1;
		}
		return res;
	}

	friend ostream& operator<<(ostream &o,const Matrix& A){
		rep(i,A.h()){
			rep(j,A.w()) o << A[i][j]<<" ";
			o << endl;
		}
		return o;
	}

	T trace(){
		T t = 0;
		rep(i,h()) t += (*this)[i][i];
		return t;
	}
};
using Mat = Matrix<mint>;

V<mint> fact,ifact,invs;
mint Choose(int a,int b){
	if(b<0 || a<b) return 0;
	return fact[a] * ifact[b] * ifact[a-b];
}
void InitFact(int N){	//[0,N]
	N++;
	fact.resize(N);
	ifact.resize(N);
	invs.resize(N);
	fact[0] = 1;
	rep1(i,N-1) fact[i] = fact[i-1] * i;
	ifact[N-1] = fact[N-1].inv();
	for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1);
	rep1(i,N-1) invs[i] = fact[i-1] * ifact[i];
}
template<class T>
T rnd(T l,T r){	//[l,r)
	using D = uniform_int_distribution<T>;
	static random_device rd;
	static mt19937 gen(rd());
	return D(l,r-1)(gen);
}
template<class T>
T rnd(T n){	//[0,n)
	return rnd(T(0),n);
}

/*
	inversion
	なければ {{}}
*/
template<class T>
vector<vector<T>> Matrixinv(vector<vector<T>> a){
	assert(a.size() == a[0].size());
	vector<vector<T>> no;
	int n = a.size();
	vector<int> ih(n,-1), jh(n,-1);
	rep(k,n){
		for(int i=k;i<n;i++) if(ih[k] == -1){
			for(int j=k;j<n;j++) if(a[i][j]){
				ih[k] = i, jh[k] = j; break;
			}
		}
		if(ih[k] == -1) return no;
		rep(j,n) swap(a[k][j],a[ih[k]][j]);
		rep(i,n) swap(a[i][k],a[i][jh[k]]);
		if(!a[k][k]) return no;
		a[k][k] = a[k][k].inv();
		rep(i,n) if(i != k) a[k][i] *= a[k][k];
		rep(i,n) if(i != k){
			rep(j,n) if(j != k){
				a[i][j] -= a[i][k]*a[k][j];
			}
		}
		rep(i,n) if(i != k) a[i][k] *= -a[k][k];
	}
	per(k,n){
		rep(j,n) swap(a[k][j],a[jh[k]][j]);
		rep(i,n) swap(a[i][k],a[i][ih[k]]);
	}
	return a;
}

/*
	テンソル積 (クロネッカー積)
	A⊗B =[a{0,0}B .. a_{0,w-1}B]
		  [a{1,0}B .. a_{1,w-1}B]
			:
	Aの1マスを分割してBにするイメージ
*/
template<class T>
vector<vector<T>> tensor(vector<vector<T>> A, vector<vector<T>> B){
	int ah = si(A), aw = si(A[0]), bh = si(B), bw = si(B[0]);
	vector<vector<T>> C(ah*bh,vector<T>(aw*bw));
	rep(ai,ah) rep(aj,aw){
		rep(bi,bh) rep(bj,bw){
			C[ai*bh+bi][aj*bw+bj] = A[ai][aj] * B[bi][bj];
		}
	}
	return C;
}

VV<int> perms;
VV<int> op;
V<int> inv;
VV<int> types;
V<int> type;

/*
	charTable[irred rep][cycle type]
	Sn の表現論なので irred rep の方も cycle type で indexed できるが、
	irred rep の順番は自由にしていい
	cycle type の index は type[] と一致してないといけない
	S_20 くらいまでの表を生成してくれるサイト: https://www.jgibson.id.au/articles/characters/
	https://math.mit.edu/events/stanley70/Site/Slides/Early.pdf
	この表の順番は type[] と一致してる
*/

VV<Mat> irredReps;
V<int> dims;

/*
	でかい順にならべたときの辞書順
	{{1,1,1,1,1,},{2,1,1,1,},{2,2,1,},{3,1,1,},{3,2,},{4,1,},{5,},}
*/
void enumTypes(int n){
	V<int> a;
	auto dfs = [&](auto&& self, int s, int p) -> void {
		if(s == 0){
			types.pb(a);
			return;
		}
		rep1(i,min(p,s)){
			a.pb(i);
			self(self,s-i,i);
			a.pop_back();
		}
	};
	dfs(dfs,n,n);
	// show(types);
}

void initPerms(int n){
	V<int> a(n); iota(all(a),0);
	do{
		perms.pb(a);
	}while(next_permutation(all(a)));
	int m = si(perms);
	op = VV<int>(m,V<int>(m));
	inv = V<int>(m);
	rep(i,m) rep(j,m){
		V<int> ij(n);
		rep(k,n) ij[k] = perms[i][perms[j][k]];
		op[i][j] = find(all(perms),ij) - perms.begin();
		if(op[i][j] == 0) inv[i] = j;
	}
	enumTypes(n);
	rep(i,m){
		V<int> b = perms[i];
		V<bool> done(n);
		V<int> cs;
		rep(j,n) if(!done[j]){
			int c = 0;
			int x = j;
			while(!done[x]){
				done[x] = true;
				c++;
				x = b[x];
			}
			cs.pb(c);
		}
		sort(all(cs),greater<int>());
		type.pb(lwb(types,cs));
	}
	// show(perms);show(op);show(type);
}

void initIrredReps(){
	irredReps.resize(3);	// num of irred reps
	for(auto& irred: irredReps) irred.resize(6);
	// 012 021 102 120 201 210
	using M = VV<mint>;
	rep(j,6) irredReps[0][j] = VV<mint>{{1}};
	irredReps[1] = {M{{1}},M{{-1}},M{{-1}},M{{1}},M{{1}},M{{-1}}};
	irredReps[2][0] = M{{1,0},{0,1}};
	irredReps[2][1] = M{{1,0},{1,-1}};
	irredReps[2][2] = M{{-1,1},{0,1}};
	irredReps[2][3] = M{{0,-1},{1,-1}};
	irredReps[2][4] = M{{-1,1},{-1,0}};
	irredReps[2][5] = M{{0,-1},{-1,0}};
	for(auto& irred: irredReps){
		rep(i,6) rep(j,6) assert(irred[i] * irred[j] == irred[op[i][j]]);
	}

	rep(s,si(irredReps)){
		dims.pb(irredReps[s][0].h());
	}
}

// vector<Mat> FT1(V<mint> a){
// 	vector<Mat> za;
// 	for(auto& irrep: irredReps){
// 		int k = irrep[0].h();
// 		Mat sm(k);
// 		rep(v,6) sm += irrep[v] * a[v];
// 		za.pb(sm);
// 	}
// 	return za;
// }
// V<mint> iFT1(vector<Mat> za){
// 	vector<mint> a(6);
// 	rep(v,6){
// 		rep(s,3) a[v] += dims[s] * (irredReps[s][inv[v]] * za[s]).trace();
// 	}
// 	mint coef = mint(6).inv();
// 	rep(i,6) a[i] *= coef;
// 	return a;
// }

vector<Mat> FT1(vector<Mat> a){
	vector<Mat> za;
	for(auto& irrep: irredReps){
		int k = a[0].h() * irrep[0].h();
		Mat sm(k);
		rep(v,6) sm += tensor(a[v],irrep[v]);
		za.pb(sm);
	}
	return za;
}

/*
	Mat za はテンソルなわけだが、最後に右からかけた行列がd*d で、これを一点に圧縮するイメージ
	za の各 d*d ブロックにたいして、1次元バージョンのやつをやる
*/
vector<Mat> iFT1(vector<Mat> za){
	int n = si(za[0]) / dims[0];
	vector<Mat> a(6,Mat(n));
	rep(s,3) rep(v,6){
		int d = dims[s];
		rep(i,n) rep(j,n){
			Mat block(d);
			rep(ii,d) rep(jj,d) block[ii][jj] = za[s][i*d+ii][j*d+jj];
			a[v][i][j] += dims[s] * (block * irredReps[s][inv[v]]).trace();
		}
	}
	mint coef = mint(6).inv();
	rep(i,6) a[i] *= coef;
	return a;
}


// V<mint> conv1(V<mint> a, V<mint> b){
// 	vector<Mat> za = FT1(a), zb = FT1(b);
// 	rep(s,si(za))  za[s] *= zb[s];
// 	return iFT1(za);
// }

// V<mint> conv1_brute(V<mint> a, V<mint> b){
// 	int n = si(a);
// 	V<mint> c(n);
// 	rep(i,n) rep(j,n) c[op[i][j]] += a[i]*b[j];
// 	return c;
// }


template<class T>
struct ndarray{
	int S;
	vector<T> v;
	vector<int> ms;
	vector<int> coefs;

	ndarray(){}
	ndarray(vector<int> ms_):ms(ms_),coefs(si(ms_),1){
		for(int d=si(ms)-2;d>=0;d--) coefs[d] = coefs[d+1] * ms[d+1];
		S = 1; rep(d,si(ms)) S *= ms[d];
		v.resize(S);
	}
	int id(const vector<int>& is) const {
		int s = 0;
		for(int d=0;d<si(ms);d++) s += is[d] * coefs[d];
		return s;
	}
	vector<int> di(int i){
		V<int> is(si(ms));
		rep(d,si(ms)){
			is[d] = i/coefs[d];
			i %= coefs[d];
		}
		return is;
	}

	T& operator[](const vector<int>& is){
		return v[id(is)];
	}
	const T& operator[](const vector<int>& is) const {
		return v[id(is)];
	}
	T& operator[](int i){
		return v[i];
	}
	const T& operator[](int i) const {
		return v[i];
	}

	friend ostream& operator<<(ostream &o,const ndarray& a){
		return o << a.v;
	}
	int size(){
		return S;
	}
	int dim(){
		return si(ms);
	}
};

template<class T> using arr = ndarray<T>;

arr<Mat> FT(arr<mint> a_){
	arr<Mat> a(a_.ms); rep(i,a.size()) a[i] = VV<mint>{{a_[i]}};
	int n = a.dim();
	rep(d,n){
		// d次元目を変換
		// a[3][3][0,..,5][6][6] -> a[3][3][0,..,2][6][6]
		V<int> nms = a.ms; nms[d] = 3;
		arr<Mat> na(nms);
		int S = a.size();
		int D = 1; rep(_,n-1-d) D *= 6;
		rep(s,S) if(a.di(s)[d] == 0){
			V<Mat> slice(6);
			rep(i,6) slice[i] = a[s+D*i];
			V<Mat> zslice = FT1(slice);
			V<int> is = a.di(s);
			rep(i,3){
				is[d] = i;
				na[is] = zslice[i];
			}
		}
		a = na;
	}
	return a;
}
arr<mint> iFT(arr<Mat> a){
	int n = a.dim();
	per(d,n){
		// d次元目を逆変換
		// a[3][3][0,..,5][6][6] <- a[3][3][0,..,2][6][6]
		V<int> nms = a.ms; nms[d] = 6;
		arr<Mat> na(nms);
		int S = a.size();
		int D = 1; rep(_,n-1-d) D *= 6;
		rep(s,S) if(a.di(s)[d] == 0){
			V<Mat> zslice(3);
			rep(i,3) zslice[i] = a[s+D*i];
			V<Mat> slice = iFT1(zslice);
			V<int> is = a.di(s);
			rep(i,6){
				is[d] = i;
				na[is] = slice[i];
			}
		}
		a = na;
	}
	arr<mint> res(a.ms);
	rep(i,a.size()) res[i] = a[i][0][0];
	return res;
}

arr<mint> conv(arr<mint> a, arr<mint> b){
	arr<Mat> za = FT(a), zb = FT(b);
	rep(i,za.size()) za[i] *= zb[i];
	return iFT(za);
}
arr<mint> conv_brute(arr<mint> a, arr<mint> b){
	int S = a.size();
	int n=0;
	{
		int x = S;
		while(x>1){
			x/=6;
			n++;
		}
	}
	arr<mint> c(V<int>(n,6));
	rep(i,S) rep(j,S){
		auto is = c.di(i);
		auto js = c.di(j);
		V<int> ks(si(is));
		rep(_,si(ks)) ks[_] = op[is[_]][js[_]];
		c[ks] += a[i]*b[j];
	}
	return c;
}

void TEST(){
	if(false){
		int n; cin >> n;
		V<int> ms(n,6);
		arr<mint> a(ms);
		rep(i,a.size()) a[i] = rnd(2);
		auto za = FT(a);
		auto aa = iFT(za);
		cerr << a << endl;
		cerr << za << endl;
		cerr << aa << endl;
		assert(a.v == aa.v);
		exit(0);
	}
	if(false){
		int n; cin >> n;
		V<int> ms(n,6);
		arr<mint> a(ms),b(ms);
		rep(i,a.size()) a[i] = rnd(2);
		rep(i,b.size()) b[i] = rnd(2);
		auto za = FT(a);
		auto aa = iFT(za);
		assert(a.v == aa.v);
		cerr << conv(a,b) << endl;
		cerr << conv_brute(a,b) << endl;
		exit(0);
	}

	// while(true){
	// 	V<mint> a(6),b(6);
	// 	rep(i,6) cin >> a[i];
	// 	rep(i,6) cin >> b[i];
	// 	show(conv1_brute(a,b));
	// 	show(conv1(a,b));
	// }
	// while(true){
	// 	V<mint> a(6); rep(i,6) cin >> a[i];
	// 	auto za = FT1(a);
	// 	show(za);
	// 	auto aa = iFT1(za);
	// 	show(aa);
	// }
}



int main(){
	cin.tie(0);
	ios::sync_with_stdio(false);		//DON'T USE scanf/printf/puts !!
	cout << fixed << setprecision(20);

	initPerms(3);
	initIrredReps();
	// cerr << "OK" << endl;

	// TEST();

	int n; cin >> n;
	int S = 1; rep(_,n) S *= 6;
	arr<mint> in(V<int>(n,6)); rep(i,S) cin >> in[i];
	// arr<mint> in(V<int>(n,6)); rep(i,S) in[i] = rnd(114514);
	// ans = p/(1-(1-p)f) = inv(M-in)

	mint M = accumulate(all(in.v),mint(0)) + 1;
	arr<mint> f(V<int>(n,6)); rep(i,S) f[i] = -in[i];
	f[0] += M;
	auto zf = FT(f);
	// h = id, zh = 単位行列からなるやつら
	arr<Mat> zg(zf.ms);
	rep(i,zf.size()){
		zg[i] = Matrixinv(zf[i]);
		if(zg[i].empty()){
			cout << -1 << endl; return 0;
		}
	}
	auto g = iFT(zg);
	// cerr << g << endl;
	// cerr << accumulate(all(g.v),mint(0)) << endl;
	ll ans = 0;
	for(mint v: g.v) ans ^= v.v;
	cout << ans << endl;
}

Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 10
Accepted

Test #1:

score: 10
Accepted
time: 1ms
memory: 3672kb

input:

1
10 10 10 10 499122217 499122156

output:

-1

result:

ok 1 number(s): "-1"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3628kb

input:

1
719885386 651516139 596516649 191397068 26958009 352245674

output:

320270701

result:

ok 1 number(s): "320270701"

Test #3:

score: 0
Accepted
time: 1ms
memory: 3560kb

input:

1
783368690 104275706 48409057 969269573 366936187 542139073

output:

252144401

result:

ok 1 number(s): "252144401"

Subtask #2:

score: 20
Accepted

Dependency #1:

100%
Accepted

Test #4:

score: 20
Accepted
time: 1ms
memory: 3596kb

input:

2
304089172 305211383 35005211 521595368 294702567 728712076 336465782 861021530 278722862 233665123 148685361 468703135 103269576 803735449 317389669 635723058 370888716 127653814 61717040 92529750 628175011 658233689 132931876 655133020 859484421 916300566 608413784 756898537 736330845 975349971 1...

output:

396724238

result:

ok 1 number(s): "396724238"

Test #5:

score: 0
Accepted
time: 1ms
memory: 3676kb

input:

2
913515603 749241873 137806862 42999170 982906996 135497281 511702305 87932219 939232731 829091974 572660336 160882152 805750846 634377376 102416960 435681504 143371771 84353895 939819582 4611839 2410108 549989014 610515434 587746011 376099690 760313750 478926734 356426808 945117276 891702825 78245...

output:

870050121

result:

ok 1 number(s): "870050121"

Test #6:

score: 0
Accepted
time: 1ms
memory: 3652kb

input:

3
57511226 265850707 413305323 845749015 943947739 985965659 855636226 751454233 471103741 958053186 37896442 463480570 44162728 977716025 317097467 893822248 378465744 927612902 332328964 603570492 689682299 660260756 959997301 485560280 402724286 593209441 196709512 894429689 364228444 949102266 2...

output:

315521842

result:

ok 1 number(s): "315521842"

Test #7:

score: 0
Accepted
time: 1ms
memory: 3704kb

input:

3
349517445 588219756 858424826 59174065 995706887 824845059 66858995 625032172 387451659 471017656 564157983 298625210 296921989 59223234 801633853 557074948 382697713 476667372 72330968 260401255 296864819 774044599 697517721 4741198 952711586 337695458 798829587 758671314 67067352 719346228 84681...

output:

927050034

result:

ok 1 number(s): "927050034"

Subtask #3:

score: 0
Time Limit Exceeded

Test #8:

score: 15
Accepted
time: 1459ms
memory: 78660kb

input:

7
13237606 0 0 696947386 879320747 0 0 0 0 0 0 0 0 0 0 0 0 0 266959993 0 0 371358373 632390641 0 666960563 0 0 708812199 564325578 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 299649176 0...

output:

101942575

result:

ok 1 number(s): "101942575"

Test #9:

score: -15
Time Limit Exceeded

input:

8
114962507 0 0 952617546 783387964 0 0 0 0 0 0 0 0 0 0 0 0 0 950188130 0 0 79845349 400660703 0 865722684 0 0 186015033 757001842 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 563538995 0...

output:


result:


Subtask #4:

score: 20
Accepted

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Test #12:

score: 20
Accepted
time: 6ms
memory: 4036kb

input:

4
887790043 739693399 870246744 301313259 18507681 629005716 67544354 58092673 642897565 70732414 899481125 727551664 871859472 220238086 708355050 385234243 645860416 129326472 850844210 577801468 684900507 461005014 934205121 591855867 526169505 197643478 136123938 67642730 682939149 949635706 281...

output:

602449578

result:

ok 1 number(s): "602449578"

Test #13:

score: 0
Accepted
time: 3ms
memory: 3968kb

input:

4
557598958 113906113 211073291 59019633 110287605 318903034 307171270 201167854 142201998 886457896 24068541 289099056 55884864 35794579 11689085 615385706 684842316 559228752 366244387 646068652 535314708 313739657 846826781 931109365 759018899 574643185 553946098 150095139 137782333 741636661 949...

output:

37335981

result:

ok 1 number(s): "37335981"

Test #14:

score: 0
Accepted
time: 7ms
memory: 4048kb

input:

4
376545129 990894084 275573387 559810624 528344836 360116901 406141975 630960645 550842736 709965265 690253412 98881522 427656896 104902833 504114740 620019063 359704636 908644219 755230881 459810186 435557594 214555147 965394547 449697679 122566226 581267354 68455475 593798485 142522444 164230614 ...

output:

75788971

result:

ok 1 number(s): "75788971"

Subtask #5:

score: 0
Skipped

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Dependency #3:

0%