QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#188385#4914. Slight Hopehos_lyric#60 1742ms519232kbC++1411.3kb2023-09-25 19:47:212024-07-04 02:46:15

Judging History

你现在查看的是最新测评结果

  • [2024-07-04 02:46:15]
  • 评测
  • 测评结果:60
  • 用时:1742ms
  • 内存:519232kb
  • [2023-09-25 19:47:21]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;


struct Hld {
  int n, rt;
  // needs to be tree
  // vertex lists
  // modified in build(rt) (parent removed, heavy child first)
  vector<vector<int>> graph;
  vector<int> sz, par, dep;
  int zeit;
  vector<int> dis, fin, sid;
  // head vertex (minimum depth) in heavy path
  vector<int> head;

  Hld() : n(0), rt(-1), zeit(0) {}
  explicit Hld(int n_) : n(n_), rt(-1), graph(n), zeit(0) {}
  void ae(int u, int v) {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    graph[u].push_back(v);
    graph[v].push_back(u);
  }

  void dfsSz(int u) {
    sz[u] = 1;
    for (const int v : graph[u]) {
      auto it = std::find(graph[v].begin(), graph[v].end(), u);
      if (it != graph[v].end()) graph[v].erase(it);
      par[v] = u;
      dep[v] = dep[u] + 1;
      dfsSz(v);
      sz[u] += sz[v];
    }
  }
  void dfsHld(int u) {
    dis[u] = zeit++;
    const int deg = graph[u].size();
    if (deg > 0) {
      int vm = graph[u][0];
      int jm = 0;
      for (int j = 1; j < deg; ++j) {
        const int v = graph[u][j];
        if (sz[vm] < sz[v]) {
          vm = v;
          jm = j;
        }
      }
      swap(graph[u][0], graph[u][jm]);
      head[vm] = head[u];
      dfsHld(vm);
      for (int j = 1; j < deg; ++j) {
        const int v = graph[u][j];
        head[v] = v;
        dfsHld(v);
      }
    }
    fin[u] = zeit;
  }
  void build(int rt_) {
    assert(0 <= rt_); assert(rt_ < n);
    rt = rt_;
    sz.assign(n, 0);
    par.assign(n, -1);
    dep.assign(n, -1);
    dep[rt] = 0;
    dfsSz(rt);
    zeit = 0;
    dis.assign(n, -1);
    fin.assign(n, -1);
    head.assign(n, -1);
    head[rt] = rt;
    dfsHld(rt);
    assert(zeit == n);
    sid.assign(n, -1);
    for (int u = 0; u < n; ++u) sid[dis[u]] = u;
  }

  friend ostream &operator<<(ostream &os, const Hld &hld) {
    const int maxDep = *max_element(hld.dep.begin(), hld.dep.end());
    vector<string> ss(2 * maxDep + 1);
    int pos = 0, maxPos = 0;
    for (int j = 0; j < hld.n; ++j) {
      const int u = hld.sid[j];
      const int d = hld.dep[u];
      if (hld.head[u] == u) {
        if (j != 0) {
          pos = maxPos + 1;
          ss[2 * d - 1].resize(pos, '-');
          ss[2 * d - 1] += '+';
        }
      } else {
        ss[2 * d - 1].resize(pos, ' ');
        ss[2 * d - 1] += '|';
      }
      ss[2 * d].resize(pos, ' ');
      ss[2 * d] += std::to_string(u);
      if (maxPos < static_cast<int>(ss[2 * d].size())) {
        maxPos = ss[2 * d].size();
      }
    }
    for (int d = 0; d <= 2 * maxDep; ++d) os << ss[d] << '\n';
    return os;
  }

  bool contains(int u, int v) const {
    return (dis[u] <= dis[v] && dis[v] < fin[u]);
  }
  int lca(int u, int v) const {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    for (; head[u] != head[v]; ) (dis[u] > dis[v]) ? (u = par[head[u]]) : (v = par[head[v]]);
    return (dis[u] > dis[v]) ? v : u;
  }
  int jumpUp(int u, int d) const {
    assert(0 <= u); assert(u < n);
    assert(d >= 0);
    if (dep[u] < d) return -1;
    const int tar = dep[u] - d;
    for (u = head[u]; ; u = head[par[u]]) {
      if (dep[u] <= tar) return sid[dis[u] + (tar - dep[u])];
    }
  }
  int jump(int u, int v, int d) const {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    assert(d >= 0);
    const int l = lca(u, v);
    const int du = dep[u] - dep[l], dv = dep[v] - dep[l];
    if (d <= du) {
      return jumpUp(u, d);
    } else if (d <= du + dv) {
      return jumpUp(v, du + dv - d);
    } else {
      return -1;
    }
  }
  // [u, v) or [u, v]
  template <class F> void doPathUp(int u, int v, bool inclusive, F f) const {
    assert(contains(v, u));
    for (; head[u] != head[v]; u = par[head[u]]) f(dis[head[u]], dis[u] + 1);
    if (inclusive) {
      f(dis[v], dis[u] + 1);
    } else {
      if (v != u) f(dis[v] + 1, dis[u] + 1);
    }
  }
  // not path order, include lca(u, v) or not
  template <class F> void doPath(int u, int v, bool inclusive, F f) const {
    const int l = lca(u, v);
    doPathUp(u, l, false, f);
    doPathUp(v, l, inclusive, f);
  }

  // (vs, ps): compressed tree
  // vs: DFS order (sorted by dis)
  // vs[ps[x]]: the parent of vs[x]
  // ids[vs[x]] = x, not set for non-tree vertex
  vector<int> ids;
  pair<vector<int>, vector<int>> compress(vector<int> us) {
    // O(n) first time
    ids.resize(n, -1);
    std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
      return (dis[u] < dis[v]);
    });
    us.erase(std::unique(us.begin(), us.end()), us.end());
    int usLen = us.size();
    assert(usLen >= 1);
    for (int x = 1; x < usLen; ++x) us.push_back(lca(us[x - 1], us[x]));
    std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
      return (dis[u] < dis[v]);
    });
    us.erase(std::unique(us.begin(), us.end()), us.end());
    usLen = us.size();
    for (int x = 0; x < usLen; ++x) ids[us[x]] = x;
    vector<int> ps(usLen, -1);
    for (int x = 1; x < usLen; ++x) ps[x] = ids[lca(us[x - 1], us[x])];
    return make_pair(us, ps);
  }
};

////////////////////////////////////////////////////////////////////////////////


int N, Q;
vector<Mint> A;
vector<int> P;

Mint brute(int L, int R) {
  static Mint dp[5010];
  copy(A.begin() + L, A.begin() + R, dp + L);
  Mint ans = 0;
  for (int u = R; --u >= L; ) {
    if (P[u] < L) {
      ans += dp[u] * dp[u];
    } else {
      dp[P[u]] += dp[u];
    }
  }
  return ans;
}


namespace sqr {
Hld hld;

// constexpr int K = 4;
constexpr int K = 500;
vector<Mint> f[501], g[501];

int qid;
vector<int> app;
vector<Mint> fs;

void build() {
  hld = Hld(N);
  for (int u = 1; u < N; ++u) hld.ae(P[u], u);
  hld.build(0);
  
  for (int x = 0; x <= N / K; ++x) {
    const int r = x * K;
    f[x].assign(r + 1, 0);
    g[x].assign(r + 1, 0);
    for (int u = 0; u < r; ++u) f[x][u] = A[u];
    for (int u = r; --u >= 1; ) f[x][P[u]] += f[x][u];
    for (int u = 0; u < r; ++u) g[x][u + 1] = g[x][u] + f[x][u] * f[x][u];
  }
  
  qid = 0;
  app.assign(N, 0);
  fs.assign(N, 0);
}

Mint query(int L, int R) {
  ++qid;
  const int M = lower_bound(P.begin() + L, P.begin() + R, L) - P.begin();
  const int x = R / K;
  const int r = x * K;
  Mint ans = 0;
  if (L < min(M, r)) {
    ans += g[x][min(M, r)] - g[x][L];
  }
  for (int u = max(L, r); u < R; ++u) {
    int v = hld.jumpUp(u, max(hld.dep[u] - hld.dep[L] - 1, 0));
    if (L <= hld.par[v]) v = hld.par[v];
    if (app[v] != qid) {
      app[v] = qid;
      fs[v] = (v < r) ? f[x][v] : 0;
    }
// cerr<<"u = "<<u<<": v = "<<v<<"; "<<fs[v]<<" -> "<<(fs[v]+A[u])<<endl;
    ans += A[u] * (fs[v] + fs[v] + A[u]);
    fs[v] += A[u];
  }
  return ans;
}
} // sqr


int main() {
  for (; ~scanf("%d%d", &N, &Q); ) {
    A.resize(N);
    for (int u = 0; u < N; ++u) {
      scanf("%u", &A[u].x);
    }
    P.resize(N);
    for (int u = 1; u < N; ++u) {
      scanf("%d", &P[u]);
      --P[u];
    }
    P[0] = -1;
    
    sqr::build();
    
    int lst = 0;
    for (int q = 0; q < Q; ++q) {
      int L, R;
      scanf("%d%d", &L, &R);
      L ^= lst;
      R ^= lst;
      --L;
// cerr<<COLOR("33")<<"query ["<<L<<", "<<R<<")"<<COLOR()<<endl;
      const Mint ans = sqr::query(L, R);
      printf("%u\n", ans.x);
#ifdef LOCAL
if(N<=5000){
 const Mint brt=brute(L,R);
 if(brt!=ans)cerr<<L<<" "<<R<<": "<<brt<<" "<<ans<<endl;
 assert(brt==ans);
}
#endif
#ifdef LOCAL
if(N==250000)continue;
#endif
      lst = ans.x;
    }
  }
  return 0;
}

詳細信息

Subtask #1:

score: 20
Accepted

Test #1:

score: 20
Accepted
time: 18ms
memory: 4856kb

input:

5000 5000
63141398 126604376 697512251 741353996 356604726 507953968 494219271 973110260 460861914 988416009 970876787 448429588 725493166 883501210 51076237 784293761 8003146 766721589 406465089 330785670 782582116 501008987 936941546 564663613 40330818 320342607 566652836 806983548 79234347 581976...

output:

148388816
822655068
341356275
153648250
610508782
658092334
115032444
61006948
232896592
132532556
281147472
170577711
453242756
564024529
950510296
417644928
35757971
824080049
490493323
96124139
158766038
597702738
69672015
841035419
405236159
258190228
66326403
227299828
359113584
34672879
117324...

result:

ok 5000 numbers

Test #2:

score: 0
Accepted
time: 18ms
memory: 4936kb

input:

5000 5000
208095035 189388209 910573484 151351163 857032742 409791136 427941504 561340305 440094307 848312088 743662365 160219901 584491656 208412392 473499824 79323110 469342548 790678258 903532373 940176368 916303640 12519872 294579622 875495570 887250524 595928577 642259826 222149097 873031301 42...

output:

597291565
466590571
543666430
955934901
739756468
993328702
393451173
956126185
739018480
946329402
990581650
589085210
656552878
941726143
200128337
610853683
191337824
450787673
494378602
960833257
772065473
317098668
597989053
965678661
839020241
790226238
400110943
786188793
733806002
190637300
...

result:

ok 5000 numbers

Test #3:

score: 0
Accepted
time: 15ms
memory: 4804kb

input:

5000 5000
758829686 846421586 795445842 923423765 650851801 380291052 781540894 445139283 780903169 45635176 303532742 70594608 850028582 748168745 597843692 246704898 350529309 7279358 973729172 269517593 22112036 125333845 309121459 968441730 686776540 975145839 926379079 346059534 292798462 19216...

output:

463197740
26979945
961115125
585910970
224451566
822036760
183497285
813892643
8997869
291414695
131978485
899584925
779621202
716522212
879375421
91045492
330290371
691691224
52633475
340848115
186272999
890054530
911975959
514382765
763838056
167285656
930279525
785049503
150045446
570741767
97509...

result:

ok 5000 numbers

Test #4:

score: 0
Accepted
time: 17ms
memory: 4880kb

input:

5000 5000
831640431 885460668 883290311 161278701 616481017 280845019 388780100 404687561 721779426 228266599 363600658 948454460 388371957 246028605 655768029 731008092 605246260 564445876 760408308 26166250 71491179 320543409 377278440 522729682 703367018 322884625 692206745 411811213 557175990 77...

output:

973564643
126270676
513879186
160315552
474692304
502474019
656022067
882003880
105940288
652267128
369294132
107152190
559575798
752075334
355587403
735085822
578199820
483981812
74890692
358519217
379879058
32070627
446003765
10882971
382837033
282137994
909326140
46106521
358500230
735281951
3598...

result:

ok 5000 numbers

Test #5:

score: 0
Accepted
time: 19ms
memory: 4540kb

input:

5000 5000
386586821 473104785 923115322 80627280 723972117 76500891 901470530 40141226 605413269 508843738 568157568 511437103 387870706 707269439 370782055 605387529 647770332 427178306 213279296 635360385 647527011 43127485 265465400 93955214 147422318 973617973 166812244 700732812 611016742 80446...

output:

789940086
697637206
408002193
990320561
762711381
901590837
762961896
271872873
291306692
551854139
437673271
270540330
691269003
978607745
525751254
343060584
72443046
300879617
278943004
760067231
235472075
976841481
936605508
479647311
686662820
58080719
886417986
681348294
512210247
340704136
86...

result:

ok 5000 numbers

Test #6:

score: 0
Accepted
time: 19ms
memory: 4556kb

input:

5000 5000
792216357 552236642 821494867 527714453 169575822 820595714 51053252 285231608 834824001 795954150 856055581 789265115 391543052 623878414 831103431 973063635 851485478 722429924 377946447 74393554 229570805 77829523 104941568 904281532 519848089 214665346 829017846 170077097 530089743 975...

output:

231592521
710420358
76758915
241413386
430224292
922200556
894399093
539685138
594923071
860157611
94869286
900661909
4590133
587348986
920780522
790820661
536438280
976402941
439797034
327200752
920824344
894723053
962589436
412895743
843160266
488926976
317592562
384947824
445153417
711558885
8449...

result:

ok 5000 numbers

Subtask #2:

score: 20
Accepted

Dependency #1:

100%
Accepted

Test #7:

score: 20
Accepted
time: 285ms
memory: 29996kb

input:

50000 50000
768966868 59696813 88144593 167570175 440425517 667021648 50234623 250465092 611066949 942141813 37909983 544761802 310089692 393644730 822735225 212716527 45802184 416983999 978914560 514007472 271601592 803603476 153018866 463206234 430926936 205142491 621149405 347663094 909171725 990...

output:

535964317
498669705
110235462
577178694
458409211
180052579
833120408
528030659
854656432
578186212
647551642
106109933
785867614
715665434
119860891
227206432
978129416
355043244
824024937
889456087
653872988
218204727
768257490
147883304
92932220
842681002
700378724
973977972
293932154
820122893
4...

result:

ok 50000 numbers

Test #8:

score: 0
Accepted
time: 233ms
memory: 28016kb

input:

50000 50000
926434242 833464466 818417327 197100897 15934287 644632732 232006706 557905827 95530335 953397962 584509490 134039675 456180816 88153497 341272750 905812813 623878180 753926638 345776279 455413981 491623547 971836681 670535283 525534014 876800156 818154122 115494771 967365768 513073832 9...

output:

50189578
614003924
406679462
891916825
854664555
383564578
656197644
2618026
701413889
802641599
87893214
112489935
882216004
256603507
510017739
429242037
619481996
800403686
180804571
620515587
694607788
124659042
803354134
599430985
133489716
153343561
718376448
482871834
148308285
176675015
3185...

result:

ok 50000 numbers

Test #9:

score: 0
Accepted
time: 183ms
memory: 30924kb

input:

50000 50000
771988922 212436623 804443396 817827846 830699527 784422632 729884276 912003446 995885315 824721340 837642183 283068922 372817603 100299803 60891115 676351412 641016821 983300431 887927410 950464053 960650766 801946150 981593160 201935570 609178140 408519531 929272301 588279454 605903956...

output:

331430307
842168506
514428667
355689311
865723558
272088222
5106326
724323283
63969592
24689102
375126359
172043952
425829760
749877111
327857093
646470881
65951216
305793882
95712629
723748855
433154753
809570577
771906309
477420435
245967760
460647924
923047416
272709139
700228441
906998284
174826...

result:

ok 50000 numbers

Test #10:

score: 0
Accepted
time: 181ms
memory: 30952kb

input:

50000 50000
900366749 674207154 742580520 423717735 53773991 646025272 25689686 304532836 101502882 140887825 84382607 434523825 626129678 318135577 937888950 303284365 836439804 651694084 478701931 947065798 684677978 332843230 554104599 912552910 417149550 163252218 881219604 924426344 842413390 6...

output:

866369968
233793457
165937004
573866572
499141399
50069437
126848823
357332948
487646929
199006759
335058982
690767657
892697514
805303044
886885871
694863196
5801194
954769260
109473624
573415210
828217282
59732343
505053373
352386067
840363722
636894175
425645259
208103655
473793746
127002236
7193...

result:

ok 50000 numbers

Test #11:

score: 0
Accepted
time: 194ms
memory: 30136kb

input:

50000 50000
128009702 835394168 195582915 237058448 308987847 332547707 3181530 522885776 607169352 843503488 560544297 234676319 754038773 971946242 251601569 713013731 449922156 964200243 270751518 485953250 983022206 416540821 96233750 773462469 218771460 869573801 1826928 217439825 101327578 643...

output:

809413913
900087043
897489309
490488662
860111942
389091241
845061538
685662609
477979480
990731474
975276464
524647592
959334221
279016791
579113462
806057027
834352370
414957639
135587999
772681462
736164077
81034876
768035946
828362323
685292149
417723235
77932963
281011135
28218190
682861276
258...

result:

ok 50000 numbers

Test #12:

score: 0
Accepted
time: 193ms
memory: 30056kb

input:

50000 50000
599691755 74459068 334593294 689318718 842905094 443210545 96280108 643838657 591570435 747119928 963798260 884441507 753584023 622768897 446596420 332458502 185519101 709830529 141249071 885916331 314791389 276299436 336855194 552443961 696874117 738278010 593700707 229502424 335910014 ...

output:

162968440
829114
814500713
268429015
476122947
818974632
467331763
12940232
70162519
26148936
753219232
517231641
428317039
509625675
870990487
600796230
385649006
922400831
368412364
536483891
715148335
810869176
206671100
908712544
377398265
119727728
226288513
266653103
263036296
547334935
552450...

result:

ok 50000 numbers

Test #13:

score: 0
Accepted
time: 313ms
memory: 28092kb

input:

50000 50000
509049147 846306934 497301582 156085268 418734386 738839401 463112303 670194644 148295378 897052920 337867193 22462071 304900070 737711091 665480978 823159855 481862593 827100577 316492474 693956517 618429668 870188133 65980921 940212747 403208852 268141196 171329777 255058173 740325554 ...

output:

395519880
988998325
123071413
493713767
662307084
960909185
899731232
660410246
707341210
28490302
887326532
11593659
417615875
848911573
573179668
137809591
475174820
133873443
756015822
372043435
654859285
863530053
521918428
957117123
712163801
591167143
206607972
85953124
12946789
66960555
99205...

result:

ok 50000 numbers

Test #14:

score: 0
Accepted
time: 254ms
memory: 28252kb

input:

50000 50000
271460757 98184763 207476207 318550358 36132989 163998764 834240576 816456648 104049969 565152081 639115703 63526614 540131202 584035121 125994524 103597578 198061629 69949079 246096816 249710935 309174260 770090066 306030177 506695475 716974345 478421640 989138506 146754109 896531147 87...

output:

227639846
402726965
215887242
144596012
768374615
60584104
132321406
817024981
963910026
42360689
737913188
348299774
276641697
65869541
636135686
129087361
794550831
458540944
2270242
99210275
74519859
983209150
670092005
849382923
682067660
418183252
61685226
144713076
943183123
543020736
32933718...

result:

ok 50000 numbers

Subtask #3:

score: 20
Accepted

Test #15:

score: 20
Accepted
time: 1709ms
memory: 518984kb

input:

250000 250000
768540930 17767906 372927484 987601476 466807233 279110163 484031897 581293130 869165405 440806324 190995959 228277657 510008046 885148108 825022142 732048181 608976903 327270073 923084855 752263987 475969665 911033413 561860569 377841111 401028041 117941740 350378391 295513473 2304741...

output:

645687892
804644292
204845058
833159303
438840602
426417420
912375389
325277630
897894204
651802587
232723981
612719545
449284803
97772899
900152796
609960724
641400352
204127911
176781081
752207129
720790544
624982826
923898464
696425075
641906962
568669044
49974863
45637134
16934743
814263646
3524...

result:

ok 250000 numbers

Test #16:

score: 0
Accepted
time: 1696ms
memory: 519232kb

input:

250000 250000
891116300 898356877 251723070 604671849 697052662 536848016 939693407 986573382 593450706 855565471 640899587 67478597 127577868 205200967 935001574 667983193 695063369 974771972 958840013 509047663 933018751 809878590 601610117 337290677 687704465 365112336 704196535 158405904 7278515...

output:

119336010
921443294
779683070
950551877
180248958
344824198
755825894
552477508
969820065
401891602
680193691
326353587
922152363
128919523
206197552
621042892
992122592
674625075
560913507
365647753
93734067
528767756
49194731
580013693
408137293
293884394
395805325
171434454
83012338
512032587
864...

result:

ok 250000 numbers

Test #17:

score: 0
Accepted
time: 1692ms
memory: 519104kb

input:

250000 250000
988998207 760388680 80877172 892847778 807199431 393547350 436490526 580450227 796105943 37118112 564378459 973015163 696339619 330864317 339107150 393054808 269903945 542034556 593508399 142447284 506346702 54826941 491062909 411280253 562632098 740794370 841286188 751650890 408061646...

output:

533479270
244359425
776984548
501658625
503647730
421165217
475383706
493748710
803957134
308028631
338652576
225743050
719589438
797270766
308210397
681648078
715232260
755309870
297023667
540327743
655176795
199967718
768390190
381825918
261506225
816338258
650716640
807889190
837604717
903940898
...

result:

ok 250000 numbers

Test #18:

score: 0
Accepted
time: 1742ms
memory: 519108kb

input:

250000 250000
82054290 888723988 925549675 334581140 696787014 591297195 24015805 250825352 455399696 29763540 339278830 610597821 29807173 237262484 567614041 186608691 582297589 858558005 946613881 84740258 747546189 286666089 526643626 856259798 96238988 789860420 678959410 683142401 842582154 43...

output:

185366931
801951859
356265156
462055598
126863911
949108884
412193442
213529342
464936198
390513058
492908470
412470588
49794849
694745450
799113332
757373572
111634187
780139796
206811208
297593116
215666373
588229368
129921558
277637592
192167089
750104385
43787346
966654517
181439099
622785017
21...

result:

ok 250000 numbers

Test #19:

score: 0
Accepted
time: 1700ms
memory: 519228kb

input:

250000 250000
303112864 577259977 305520229 955904347 408230826 263382697 14414636 918886374 372550214 528678589 225017216 378695342 29985355 399933915 507292974 962381308 958737761 702243621 838729080 353665889 928018619 162044348 121018117 947282353 481418612 587591271 898269843 805889605 35816203...

output:

585867031
201035063
490999542
736033151
895744149
914585406
837995141
208389376
776508499
640779260
838103956
230216004
710637540
829432702
693525890
745770938
516105287
569949793
581870756
84779525
105610416
745875258
701536062
383879261
237965240
488513885
471198096
114317593
689839166
867352849
5...

result:

ok 250000 numbers

Subtask #4:

score: 0
Memory Limit Exceeded

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Dependency #3:

100%
Accepted

Test #20:

score: 0
Memory Limit Exceeded

input:

250000 250000
1684 27592 26500 13048 4760 29684 15515 5159 20974 134 23909 27520 30454 1904 227 2452 28497 25053 30049 13839 3142 25354 11256 7474 2660 20823 7510 12676 15465 30110 27586 21956 23907 13507 26202 25377 19989 26508 20895 24494 16796 25779 6452 30992 7507 28986 20195 6009 4083 2815 6881...

output:

96805739
420659502
903298513
653391797
31584693
21333603
648135326
691422708
651502421
477431034
238029494
737658150
533593084
416924184
881552318
771216145
581451529
563971625
764611945
801800267
213752161
642275568
178651185
141795059
307732170
341959588
546615494
592854489
306671319
286287897
850...

result: