QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#187849 | #7511. Planar Graph | bulijiojiodibuliduo# | WA | 13ms | 64156kb | C++17 | 13.2kb | 2023-09-25 02:40:51 | 2023-09-25 02:40:53 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define eb emplace_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef basic_string<int> BI;
typedef long long ll;
typedef pair<int,int> PII;
typedef double db;
mt19937 mrand(random_device{}());
const ll mod=1000000007;
int rnd(int x) { return mrand() % x;}
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
// head
const int V=201000,E=1201000;
int n,m,x,y,fcnt,Q,u[E],v[E],ouf;
ll S[E];
struct edge {
edge *pre,*nxt,*op;
int id,sp; // sp start
double ang;
ll vx,vy;
bool fg;
}e[E];
map<int,edge*> eg[V];
struct point {
ll x,y;
vector<edge*> e;
point() {}
point(ll x,ll y):x(x),y(y) {}
}pnt[V];
vector<edge*> f[E];
void add(int x,int y,int p) {
eg[x][y]=e+p; eg[y][x]=e+p+m;
e[p].op=e+p+m;e[p+m].op=e+p;
e[p].sp=x;e[p+m].sp=y;
e[p].vx=pnt[y].x-pnt[x].x; e[p].vy=pnt[y].y-pnt[x].y;
e[p].ang=atan2(e[p].vy,e[p].vx);
e[p+m].vx=pnt[x].x-pnt[y].x; e[p+m].vy=pnt[x].y-pnt[y].y;
e[p+m].ang=atan2(e[p+m].vy,e[p+m].vx);
pnt[x].e.pb(e+p);
pnt[y].e.pb(e+p+m);
}
typedef double db;
const db EPS = 1e-9;
const db PI = acos(-1.0);
inline int sign(db a) { return a < -EPS ? -1 : a > EPS; }
inline int cmp(db a, db b){ return sign(a-b); }
struct P {
db x, y;
P() {}
P(db _x, db _y) : x(_x), y(_y) {}
P operator+(P p) { return {x + p.x, y + p.y}; }
P operator-(P p) { return {x - p.x, y - p.y}; }
P operator*(db d) { return {x * d, y * d}; }
P operator/(db d) { return {x / d, y / d}; }
bool operator<(P p) const {
int c = cmp(x, p.x);
if (c) return c == -1;
return cmp(y, p.y) == -1;
}
bool operator==(P o) const{
return cmp(x,o.x) == 0 && cmp(y,o.y) == 0;
}
db dot(P p) { return x * p.x + y * p.y; }
db det(P p) { return x * p.y - y * p.x; }
db distTo(P p) { return (*this-p).abs(); }
db alpha() { return atan2(y, x); }
void read() { cin>>x>>y; }
void write() {cout<<"("<<x<<","<<y<<")"<<endl;}
db abs() { return sqrt(abs2());}
db abs2() { return x * x + y * y; }
P rot90() { return P(-y,x);}
P unit() { return *this/abs(); }
int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
P rot(db an){ return {x*cos(an)-y*sin(an),x*sin(an) + y*cos(an)}; }
};
struct L{ //ps[0] -> ps[1]
P ps[2];
P dir_;
P& operator[](int i) { return ps[i]; }
P dir() { return dir_; }
L (P a,P b) {
ps[0]=a;
ps[1]=b;
dir_ = (ps[1]-ps[0]).unit();
}
bool include(P p) { return sign((dir_).det(p - ps[0])) > 0; }
L push(){ // push eps outward
const double eps = 1e-8;
P delta = (ps[1] - ps[0]).rot90().unit() * eps;
return {ps[0] + delta, ps[1] + delta};
}
};
#define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))
#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))
bool chkLL(P p1, P p2, P q1, P q2) {
db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
return sign(a1+a2) != 0;
}
P isLL(P p1, P p2, P q1, P q2) {
db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
return (p1 * a2 + p2 * a1) / (a1 + a2);
}
P isLL(L l1,L l2){ return isLL(l1[0],l1[1],l2[0],l2[1]); }
bool intersect(db l1,db r1,db l2,db r2){
if(l1>r1) swap(l1,r1); if(l2>r2) swap(l2,r2);
return !( cmp(r1,l2) == -1 || cmp(r2,l1) == -1 );
}
bool isSS(P p1, P p2, P q1, P q2){
return intersect(p1.x,p2.x,q1.x,q2.x) && intersect(p1.y,p2.y,q1.y,q2.y) &&
crossOp(p1,p2,q1) * crossOp(p1,p2,q2) <= 0 && crossOp(q1,q2,p1)
* crossOp(q1,q2,p2) <= 0;
}
bool isSS_strict(P p1, P p2, P q1, P q2){
return crossOp(p1,p2,q1) * crossOp(p1,p2,q2) < 0 && crossOp(q1,q2,p1)
* crossOp(q1,q2,p2) < 0;
}
bool isMiddle(db a, db m, db b) {
return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);
}
bool isMiddle(P a, P m, P b) {
return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
}
bool onSeg(P p1, P p2, P q){
return crossOp(p1,p2,q) == 0 && isMiddle(p1, q, p2);
}
bool onSeg_strict(P p1, P p2, P q){
return crossOp(p1,p2,q) == 0 && sign((q-p1).dot(p1-p2)) * sign((q-p2).dot(p1-p2)) < 0;
}
P proj(P p1, P p2, P q) {
P dir = p2 - p1;
return p1 + dir * (dir.dot(q - p1) / dir.abs2());
}
P reflect(P p1, P p2, P q){
return proj(p1,p2,q) * 2 - q;
}
db nearest(P p1,P p2,P q){
if (p1==p2) return p1.distTo(q);
P h = proj(p1,p2,q);
if(isMiddle(p1,h,p2))
return q.distTo(h);
return min(p1.distTo(q),p2.distTo(q));
}
db disSS(P p1, P p2, P q1, P q2){
if(isSS(p1,p2,q1,q2)) return 0;
return min(min(nearest(p1,p2,q1),nearest(p1,p2,q2)), min(nearest(q1,q2,p1),nearest(q1,q2,p2)));
}
db rad(P p1,P p2){
return atan2l(p1.det(p2),p1.dot(p2));
}
db incircle(P p1, P p2, P p3){
db A = p1.distTo(p2);
db B = p2.distTo(p3);
db C = p3.distTo(p1);
return sqrtl(A*B*C/(A+B+C));
}
//polygon
db area(vector<P> ps){
db ret = 0; rep(i,0,ps.size()) ret += ps[i].det(ps[(i+1)%ps.size()]);
return ret/2;
}
int contain(vector<P> ps, P p){ //2:inside,1:on_seg,0:outside
int n = ps.size(), ret = 0;
rep(i,0,n){
P u=ps[i],v=ps[(i+1)%n];
if(onSeg(u,v,p)) return 1;
if(cmp(u.y,v.y)<=0) swap(u,v);
if(cmp(p.y,u.y) >0 || cmp(p.y,v.y) <= 0) continue;
ret ^= crossOp(p,u,v) > 0;
}
return ret*2;
}
vector<P> convexHull(vector<P> ps) {
int n = ps.size(); if(n <= 1) return ps;
sort(ps.begin(), ps.end());
vector<P> qs(n * 2); int k = 0;
for (int i = 0; i < n; qs[k++] = ps[i++])
while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) --k;
for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) --k;
qs.resize(k - 1);
return qs;
}
vector<P> convexHullNonStrict(vector<P> ps) {
//caution: need to unique the Ps first
int n = ps.size(); if(n <= 1) return ps;
sort(ps.begin(), ps.end());
vector<P> qs(n * 2); int k = 0;
for (int i = 0; i < n; qs[k++] = ps[i++])
while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) --k;
for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) --k;
qs.resize(k - 1);
return qs;
}
db convexDiameter(vector<P> ps){
int n = ps.size(); if(n <= 1) return 0;
int is = 0, js = 0; rep(k,1,n) is = ps[k]<ps[is]?k:is, js = ps[js] < ps[k]?k:js;
int i = is, j = js;
db ret = ps[i].distTo(ps[j]);
do{
if((ps[(i+1)%n]-ps[i]).det(ps[(j+1)%n]-ps[j]) >= 0)
(++j)%=n;
else
(++i)%=n;
ret = max(ret,ps[i].distTo(ps[j]));
}while(i!=is || j!=js);
return ret;
}
vector<P> convexCut(const vector<P>&ps, P q1, P q2) {
vector<P> qs;
int n = ps.size();
rep(i,0,n){
P p1 = ps[i], p2 = ps[(i+1)%n];
int d1 = crossOp(q1,q2,p1), d2 = crossOp(q1,q2,p2);
if(d1 >= 0) qs.pb(p1);
if(d1 * d2 < 0) qs.pb(isLL(p1,p2,q1,q2));
}
return qs;
}
//min_dist
db min_dist(vector<P>&ps,int l,int r){
if(r-l<=5){
db ret = 1e100;
rep(i,l,r) rep(j,l,i) ret = min(ret,ps[i].distTo(ps[j]));
return ret;
}
int m = (l+r)>>1;
db ret = min(min_dist(ps,l,m),min_dist(ps,m,r));
vector<P> qs; rep(i,l,r) if(abs(ps[i].x-ps[m].x)<= ret) qs.pb(ps[i]);
sort(qs.begin(), qs.end(),[](P a,P b) -> bool {return a.y<b.y; });
rep(i,1,qs.size()) for(int j=i-1;j>=0&&qs[j].y>=qs[i].y-ret;--j)
ret = min(ret,qs[i].distTo(qs[j]));
return ret;
}
int type(P o1,db r1,P o2,db r2){
db d = o1.distTo(o2);
if(cmp(d,r1+r2) == 1) return 4;
if(cmp(d,r1+r2) == 0) return 3;
if(cmp(d,abs(r1-r2)) == 1) return 2;
if(cmp(d,abs(r1-r2)) == 0) return 1;
return 0;
}
vector<P> isCL(P o,db r,P p1,P p2){
if (cmp(abs((o-p1).det(p2-p1)/p1.distTo(p2)),r)>0) return {};
db x = (p1-o).dot(p2-p1), y = (p2-p1).abs2(), d = x * x - y * ((p1-o).abs2() - r*r);
d = max(d,(db)0.0); P m = p1 - (p2-p1)*(x/y), dr = (p2-p1)*(sqrt(d)/y);
return {m-dr,m+dr}; //along dir: p1->p2
}
vector<P> isCC(P o1, db r1, P o2, db r2) { //need to check whether two circles are the same
db d = o1.distTo(o2);
if (cmp(d, r1 + r2) == 1) return {};
if (cmp(d,abs(r1-r2))==-1) return {};
d = min(d, r1 + r2);
db y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrt(r1 * r1 - y * y);
P dr = (o2 - o1).unit();
P q1 = o1 + dr * y, q2 = dr.rot90() * x;
return {q1-q2,q1+q2};//along circle 1
}
vector<P> tanCP(P o, db r, P p) {
db x = (p - o).abs2(), d = x - r * r;
if (sign(d) <= 0) return {}; // on circle => no tangent
P q1 = o + (p - o) * (r * r / x);
P q2 = (p - o).rot90() * (r * sqrt(d) / x);
return {q1-q2,q1+q2}; //counter clock-wise
}
// extanCC, intanCC : -r2, tanCP : r2 = 0
vector<pair<P, P>> tanCC(P o1, db r1, P o2, db r2) {
P d = o2 - o1;
db dr = r1 - r2, d2 = d.abs2(), h2 = d2 - dr * dr;
if (sign(d2) == 0|| sign(h2) < 0) return {};
h2 = max(0.0, h2);
vector<pair<P, P>> ret;
for (db sign : {-1, 1}) {
P v = (d * dr + d.rot90() * sqrt(h2) * sign) / d2;
ret.push_back({o1 + v * r1, o2 + v * r2});
}
if (sign(h2) == 0) ret.pop_back();
return ret;
}
db areaCT(db r, P p1, P p2){
vector<P> is = isCL(P(0,0),r,p1,p2);
if(is.empty()) return r*r*rad(p1,p2)/2;
bool b1 = cmp(p1.abs2(),r*r) == 1, b2 = cmp(p2.abs2(), r*r) == 1;
if(b1 && b2){
P md=(is[0]+is[1])/2;
if(sign((p1-md).dot(p2-md)) <= 0)
return r*r*(rad(p1,is[0]) + rad(is[1],p2))/2 + is[0].det(is[1])/2;
else return r*r*rad(p1,p2)/2;
}
if(b1) return (r*r*rad(p1,is[0]) + is[0].det(p2))/2;
if(b2) return (p1.det(is[1]) + r*r*rad(is[1],p2))/2;
return p1.det(p2)/2;
}
bool parallel(L l0, L l1) { return sign( l0.dir().det( l1.dir() ) ) == 0; }
bool sameDir(L l0, L l1) { return parallel(l0, l1) && sign(l0.dir().dot(l1.dir()) ) == 1; }
bool cmp (P a, P b) {
if (a.quad() != b.quad()) {
return a.quad() < b.quad();
} else {
return sign( a.det(b) ) > 0;
}
}
bool operator < (L l0, L l1) {
if (sameDir(l0, l1)) {
return l1.include(l0[0]);
} else {
return cmp( l0.dir(), l1.dir() );
}
}
bool check(L u, L v, L w) {
return w.include(isLL(u,v));
}
vector<P> halfPlaneIS(vector<L> &l) {
sort(l.begin(), l.end());
deque<L> q;
for (int i = 0; i < (int)l.size(); ++i) {
if (i && sameDir(l[i], l[i - 1])) continue;
while (q.size() > 1 && !check(q[q.size() - 2], q[q.size() - 1], l[i])) q.pop_back();
while (q.size() > 1 && !check(q[1], q[0], l[i])) q.pop_front();
q.push_back(l[i]);
}
while (q.size() > 2 && !check(q[q.size() - 2], q[q.size() - 1], q[0])) q.pop_back();
while (q.size() > 2 && !check(q[1], q[0], q[q.size() - 1])) q.pop_front();
vector<P> ret;
for (int i = 0; i < (int)q.size(); ++i) ret.push_back(isLL(q[i], q[(i + 1) % q.size()]));
return ret;
}
P inCenter(P A, P B, P C) {
double a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs();
return (A * a + B * b + C * c) / (a + b + c);
}
P circumCenter(P a, P b, P c) {
P bb = b - a, cc = c - a;
double db = bb.abs2(), dc = cc.abs2(), d = 2 * bb.det(cc);
return a - P(bb.y * dc - cc.y * db, cc.x * db - bb.x * dc) / d;
}
P othroCenter(P a, P b, P c) {
P ba = b - a, ca = c - a, bc = b - c;
double Y = ba.y * ca.y * bc.y,
A = ca.x * ba.y - ba.x * ca.y,
x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A,
y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
return {x0, y0};
}
const int N=101000;
int n0;
point qnt[N];
int out[N];
bool mark[N];
vector<P> pol[N];
int main() {
scanf("%d%d%d",&n,&n0,&m);
rep(i,0,n) {
scanf("%d%d",&x,&y);
pnt[i]=point(x,y);
}
rep(i,0,n0) {
scanf("%d%d",&x,&y);
qnt[i]=point(x,y);
}
rep(i,0,m) {
scanf("%d%d",u+i,v+i);
--u[i], --v[i];
}
int cntm=0;
rep(i,0,m) add(u[i],v[i],cntm++);
rep(i,0,n) {
sort(all(pnt[i].e),[&](edge* a,edge* b) {
if (fabs(a->ang-b->ang)>0.1) return a->ang<b->ang;
else return a->vy*b->vx<a->vx*b->vy;
});
for (vector<edge*>::iterator pr=--pnt[i].e.end(),nt=pnt[i].e.begin();nt!=pnt[i].e.end();pr=nt++)
(*pr)->nxt=*nt,(*nt)->pre=(*pr);
}
per(i,0,n) rep(j,0,SZ(pnt[i].e)) if (!pnt[i].e[j]->fg) {
fcnt++;
S[fcnt]=0;
edge *cure=pnt[i].e[j];
while (!cure->fg) {
cure->fg=1;
cure->id=fcnt;
f[fcnt].pb(cure);
x=cure->sp,y=cure->op->sp;
pol[fcnt].pb(P(pnt[x].x,pnt[x].y));
S[fcnt]-=(ll)pnt[x].x*pnt[y].y-(ll)pnt[x].y*pnt[y].x;
cure=cure->op->nxt;
}
//printf("?? %d %lld\n",fcnt,S[fcnt]);
if (S[fcnt]<=0) { ouf=fcnt; S[fcnt]=-1;}
}
rep(i,1,fcnt+1) if (S[i]==-1) {
int ouid=-1;
rep(j,1,fcnt+1) if (S[j]!=-1&&contain(pol[j],pol[i][0])==2) {
if (ouid==-1||S[ouid]>S[j]) ouid=j;
}
if (ouid==-1) ouid=fcnt+1;
//printf("%d %d\n",i,ouid);
out[i]=ouid;
}
rep(i,0,n0) {
P x(qnt[i].x,qnt[i].y);
int ouid=-1;
rep(j,1,fcnt) if (S[j]!=-1&&contain(pol[j],x)==2) {
if (ouid==-1||S[ouid]>S[j]) ouid=j;
}
if (ouid==-1) ouid=fcnt+1;
//printf("?? %d\n",ouid);
mark[ouid]=1;
}
rep(i,0,m) {
int u=e[i].id,v=e[i+m].id;
bool ans=0;
if ((S[u]!=-1&&mark[u])||(S[u]==-1&&mark[out[u]])) ans=1;
if ((S[v]!=-1&&mark[v])||(S[v]==-1&&mark[out[v]])) ans=1;
printf("%d",ans);
}
puts("");
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 8ms
memory: 63724kb
input:
4 1 3 -2 0 0 2 2 0 0 1 0 3 1 2 2 3 1 3
output:
111
result:
ok single line: '111'
Test #2:
score: 0
Accepted
time: 6ms
memory: 63136kb
input:
13 35 13 13 12 16 -3 18 4 4 -7 23 -22 9 -23 23 11 12 -1 19 -5 15 -15 5 -15 -17 11 -17 -13 -20 19 11 -12 -10 14 -3 14 7 -4 -10 -23 -19 -12 -13 1 -22 10 -21 -1 18 -9 -8 1 13 22 12 -23 -9 -9 -12 -20 4 -3 -6 17 14 -10 10 13 -5 -2 -4 -12 13 22 -18 -21 19 5 12 -18 4 0 3 -17 5 -2 -2 0 8 0 -8 1 14 -18 3 -9 ...
output:
1111111111111
result:
ok single line: '1111111111111'
Test #3:
score: 0
Accepted
time: 4ms
memory: 63756kb
input:
68 59 168 51 -57 -26 -51 -31 58 -45 -78 -46 -49 -53 14 76 -69 -64 32 58 -49 -1 12 -65 28 -15 -10 29 -53 25 -32 78 -41 24 -37 69 56 54 -10 3 36 -18 46 53 -30 41 -2 -30 13 -58 -37 -20 42 -48 -38 -42 22 64 0 9 -56 7 -11 -66 -23 19 -9 -26 -6 -61 -68 57 13 -13 50 -15 -11 -77 47 -77 57 78 51 -37 56 -75 24...
output:
011111111111111111100001011000001001110111110111101011011001111110011011101111110111011101001000000001010100111111100110000100110100101101111111110011001111111100100011
result:
ok single line: '011111111111111111100001011000...1111111110011001111111100100011'
Test #4:
score: 0
Accepted
time: 8ms
memory: 63596kb
input:
59 1 158 -51 8 50 48 -56 -67 19 7 33 -47 32 44 42 47 -36 -57 15 34 -8 23 -24 43 20 11 61 -41 58 -11 -68 -45 36 -54 -21 42 -28 -49 -28 -31 -34 20 29 -65 -13 38 -22 -36 -30 11 -40 57 64 -69 65 51 47 34 -41 31 -1 35 28 -11 58 58 13 12 -52 43 40 6 46 48 46 -59 -52 30 69 -23 -34 38 -1 -5 -12 -27 -11 24 -...
output:
00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000001000000000000000000000000000000000000000000000000001000000000000000
result:
ok single line: '000000000000000000000000000000...0000000000000001000000000000000'
Test #5:
score: 0
Accepted
time: 4ms
memory: 64156kb
input:
92 1 125 55 10 67 -85 -26 80 36 -32 44 -64 41 -50 -93 -80 -66 -92 -68 27 -79 9 87 -61 -40 -64 89 100 75 -42 59 40 60 -30 -66 27 63 90 -19 100 24 -20 -13 83 -100 -92 -83 58 -33 -70 74 -20 -55 73 -41 28 27 -31 -37 -22 40 18 -3 -2 70 79 71 29 32 -73 39 -1 17 -95 -61 56 94 -10 -79 -66 -84 87 -16 71 52 4...
output:
10010010000101001010010100101100100000001010001000000001101111101000011111000000001011000100000010100000000100011011000000110
result:
ok single line: '100100100001010010100101001011...0010100000000100011011000000110'
Test #6:
score: 0
Accepted
time: 3ms
memory: 63364kb
input:
85 47 204 48 93 -32 10 71 70 -37 10 20 -12 -32 -56 1 -22 -46 -64 56 82 -19 63 -5 83 16 89 79 81 51 -22 43 59 33 -87 28 67 -18 38 -16 -23 18 -78 87 66 -83 29 36 58 6 -2 68 80 18 -34 -17 59 -31 -12 -37 -75 33 -79 -51 -24 -88 6 -19 62 71 -78 -51 72 -49 -45 21 41 -58 33 46 67 -11 -31 62 46 54 55 37 -14 ...
output:
000110010001001101100010110101100100011110011110110101010100110011111010101110101001001011100000110101000100010011100100100110100001011010001010001010000100011000001101010110011001101111010000011001000011
result:
ok single line: '000110010001001101100010110101...0011001101111010000011001000011'
Test #7:
score: -100
Wrong Answer
time: 13ms
memory: 63180kb
input:
59 96 152 -75886847 147807525 335545968 317138952 262969730 -308175740 91308409 -162085508 -397786268 -191693417 -227565597 195627938 45666011 253210394 -311142459 58197832 -412164189 -270215767 -12639523 -314154358 -269901472 -366179516 -306681757 -167771007 194329800 -339296479 -12501616 -15788817...
output:
01110111111111111110101110111011101111110011100110100111110010001110111101100111100111010111111110110101110011110011111001110001111100010111110111111111
result:
wrong answer 1st lines differ - expected: '011101111111111111101011101110...1110001111100010111110111111111', found: '011101111111111111101011101110...1110001111100010111110111111111'