QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#187746#4910. Numbershos_lyric100 ✓3538ms78596kbC++1418.5kb2023-09-24 21:39:112023-09-24 21:39:11

Judging History

你现在查看的是最新测评结果

  • [2023-09-24 21:39:11]
  • 评测
  • 测评结果:100
  • 用时:3538ms
  • 内存:78596kb
  • [2023-09-24 21:39:11]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
// M: prime, G: primitive root, 2^K | M - 1
template <unsigned M_, unsigned G_, int K_> struct Fft {
  static_assert(2U <= M_, "Fft: 2 <= M must hold.");
  static_assert(M_ < 1U << 30, "Fft: M < 2^30 must hold.");
  static_assert(1 <= K_, "Fft: 1 <= K must hold.");
  static_assert(K_ < 30, "Fft: K < 30 must hold.");
  static_assert(!((M_ - 1U) & ((1U << K_) - 1U)), "Fft: 2^K | M - 1 must hold.");
  static constexpr unsigned M = M_;
  static constexpr unsigned M2 = 2U * M_;
  static constexpr unsigned G = G_;
  static constexpr int K = K_;
  ModInt<M> FFT_ROOTS[K + 1], INV_FFT_ROOTS[K + 1];
  ModInt<M> FFT_RATIOS[K], INV_FFT_RATIOS[K];
  Fft() {
    const ModInt<M> g(G);
    for (int k = 0; k <= K; ++k) {
      FFT_ROOTS[k] = g.pow((M - 1U) >> k);
      INV_FFT_ROOTS[k] = FFT_ROOTS[k].inv();
    }
    for (int k = 0; k <= K - 2; ++k) {
      FFT_RATIOS[k] = -g.pow(3U * ((M - 1U) >> (k + 2)));
      INV_FFT_RATIOS[k] = FFT_RATIOS[k].inv();
    }
    assert(FFT_ROOTS[1] == M - 1U);
  }
  // as[rev(i)] <- \sum_j \zeta^(ij) as[j]
  void fft(ModInt<M> *as, int n) const {
    assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << K);
    int m = n;
    if (m >>= 1) {
      for (int i = 0; i < m; ++i) {
        const unsigned x = as[i + m].x;  // < M
        as[i + m].x = as[i].x + M - x;  // < 2 M
        as[i].x += x;  // < 2 M
      }
    }
    if (m >>= 1) {
      ModInt<M> prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < M
          as[i + m].x = as[i].x + M - x;  // < 3 M
          as[i].x += x;  // < 3 M
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
    for (; m; ) {
      if (m >>= 1) {
        ModInt<M> prod = 1U;
        for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
          for (int i = i0; i < i0 + m; ++i) {
            const unsigned x = (prod * as[i + m]).x;  // < M
            as[i + m].x = as[i].x + M - x;  // < 4 M
            as[i].x += x;  // < 4 M
          }
          prod *= FFT_RATIOS[__builtin_ctz(++h)];
        }
      }
      if (m >>= 1) {
        ModInt<M> prod = 1U;
        for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
          for (int i = i0; i < i0 + m; ++i) {
            const unsigned x = (prod * as[i + m]).x;  // < M
            as[i].x = (as[i].x >= M2) ? (as[i].x - M2) : as[i].x;  // < 2 M
            as[i + m].x = as[i].x + M - x;  // < 3 M
            as[i].x += x;  // < 3 M
          }
          prod *= FFT_RATIOS[__builtin_ctz(++h)];
        }
      }
    }
    for (int i = 0; i < n; ++i) {
      as[i].x = (as[i].x >= M2) ? (as[i].x - M2) : as[i].x;  // < 2 M
      as[i].x = (as[i].x >= M) ? (as[i].x - M) : as[i].x;  // < M
    }
  }
  // as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]
  void invFft(ModInt<M> *as, int n) const {
    assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << K);
    int m = 1;
    if (m < n >> 1) {
      ModInt<M> prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned long long y = as[i].x + M - as[i + m].x;  // < 2 M
          as[i].x += as[i + m].x;  // < 2 M
          as[i + m].x = (prod.x * y) % M;  // < M
        }
        prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
      }
      m <<= 1;
    }
    for (; m < n >> 1; m <<= 1) {
      ModInt<M> prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + (m >> 1); ++i) {
          const unsigned long long y = as[i].x + M2 - as[i + m].x;  // < 4 M
          as[i].x += as[i + m].x;  // < 4 M
          as[i].x = (as[i].x >= M2) ? (as[i].x - M2) : as[i].x;  // < 2 M
          as[i + m].x = (prod.x * y) % M;  // < M
        }
        for (int i = i0 + (m >> 1); i < i0 + m; ++i) {
          const unsigned long long y = as[i].x + M - as[i + m].x;  // < 2 M
          as[i].x += as[i + m].x;  // < 2 M
          as[i + m].x = (prod.x * y) % M;  // < M
        }
        prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
    if (m < n) {
      for (int i = 0; i < m; ++i) {
        const unsigned y = as[i].x + M2 - as[i + m].x;  // < 4 M
        as[i].x += as[i + m].x;  // < 4 M
        as[i + m].x = y;  // < 4 M
      }
    }
    const ModInt<M> invN = ModInt<M>(n).inv();
    for (int i = 0; i < n; ++i) {
      as[i] *= invN;
    }
  }
  void fft(vector<ModInt<M>> &as) const {
    fft(as.data(), as.size());
  }
  void invFft(vector<ModInt<M>> &as) const {
    invFft(as.data(), as.size());
  }
  vector<ModInt<M>> convolve(vector<ModInt<M>> as, vector<ModInt<M>> bs) const {
    if (as.empty() || bs.empty()) return {};
    const int len = as.size() + bs.size() - 1;
    int n = 1;
    for (; n < len; n <<= 1) {}
    as.resize(n); fft(as);
    bs.resize(n); fft(bs);
    for (int i = 0; i < n; ++i) as[i] *= bs[i];
    invFft(as);
    as.resize(len);
    return as;
  }
  vector<ModInt<M>> square(vector<ModInt<M>> as) const {
    if (as.empty()) return {};
    const int len = as.size() + as.size() - 1;
    int n = 1;
    for (; n < len; n <<= 1) {}
    as.resize(n); fft(as);
    for (int i = 0; i < n; ++i) as[i] *= as[i];
    invFft(as);
    as.resize(len);
    return as;
  }
};

// M0 M1 M2 = 789204840662082423367925761 (> 7.892 * 10^26, > 2^89)
// M0 M3 M4 M5 M6 = 797766583174034668024539679147517452591562753 (> 7.977 * 10^44, > 2^149)
const Fft<998244353U, 3U, 23> FFT0;
const Fft<897581057U, 3U, 23> FFT1;
const Fft<880803841U, 26U, 23> FFT2;
const Fft<985661441U, 3U, 22> FFT3;
const Fft<943718401U, 7U, 22> FFT4;
const Fft<935329793U, 3U, 22> FFT5;
const Fft<918552577U, 5U, 22> FFT6;

// T = unsigned, unsigned long long, ModInt<M>
template <class T, unsigned M0, unsigned M1, unsigned M2>
T garner(ModInt<M0> a0, ModInt<M1> a1, ModInt<M2> a2) {
  static const ModInt<M1> INV_M0_M1 = ModInt<M1>(M0).inv();
  static const ModInt<M2> INV_M0M1_M2 = (ModInt<M2>(M0) * M1).inv();
  const ModInt<M1> b1 = INV_M0_M1 * (a1 - a0.x);
  const ModInt<M2> b2 = INV_M0M1_M2 * (a2 - (ModInt<M2>(b1.x) * M0 + a0.x));
  return (T(b2.x) * M1 + b1.x) * M0 + a0.x;
}
template <class T, unsigned M0, unsigned M1, unsigned M2, unsigned M3, unsigned M4>
T garner(ModInt<M0> a0, ModInt<M1> a1, ModInt<M2> a2, ModInt<M3> a3, ModInt<M4> a4) {
  static const ModInt<M1> INV_M0_M1 = ModInt<M1>(M0).inv();
  static const ModInt<M2> INV_M0M1_M2 = (ModInt<M2>(M0) * M1).inv();
  static const ModInt<M3> INV_M0M1M2_M3 = (ModInt<M3>(M0) * M1 * M2).inv();
  static const ModInt<M4> INV_M0M1M2M3_M4 = (ModInt<M4>(M0) * M1 * M2 * M3).inv();
  const ModInt<M1> b1 = INV_M0_M1 * (a1 - a0.x);
  const ModInt<M2> b2 = INV_M0M1_M2 * (a2 - (ModInt<M2>(b1.x) * M0 + a0.x));
  const ModInt<M3> b3 = INV_M0M1M2_M3 * (a3 - ((ModInt<M3>(b2.x) * M1 + b1.x) * M0 + a0.x));
  const ModInt<M4> b4 = INV_M0M1M2M3_M4 * (a4 - (((ModInt<M4>(b3.x) * M2 + b2.x) * M1 + b1.x) * M0 + a0.x));
  return (((T(b4.x) * M3 + b3.x) * M2 + b2.x) * M1 + b1.x) * M0 + a0.x;
}

#define ModInt ModIntR
////////////////////////////////////////////////////////////////////////////////
// Barrett
struct ModInt {
  static unsigned M;
  static unsigned long long NEG_INV_M;
  static void setM(unsigned long long m) { M = m; NEG_INV_M = -1ULL / M; }
  unsigned x;
  ModInt() : x(0U) {}
  ModInt(unsigned x_) : x(x_ % M) {}
  ModInt(unsigned long long x_) : x(x_ % M) {}
  ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) {
    const unsigned long long y = static_cast<unsigned long long>(x) * a.x;
    const unsigned long long q = static_cast<unsigned long long>((static_cast<unsigned __int128>(NEG_INV_M) * y) >> 64);
    const unsigned long long r = y - M * q;
    x = r - M * (r >= M);
    return *this;
  }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
unsigned ModInt::M;
unsigned long long ModInt::NEG_INV_M;
// !!!Use ModInt::setM!!!
////////////////////////////////////////////////////////////////////////////////

using Mint = ModInt;
#undef ModInt

vector<Mint> convolve(const vector<Mint> &as, const vector<Mint> &bs) {
  static constexpr unsigned M0 = decltype(FFT0)::M;
  static constexpr unsigned M1 = decltype(FFT1)::M;
  static constexpr unsigned M2 = decltype(FFT2)::M;
  if (as.empty() || bs.empty()) return {};
  const int asLen = as.size(), bsLen = bs.size();
  vector<ModInt<M0>> as0(asLen), bs0(bsLen);
  for (int i = 0; i < asLen; ++i) as0[i] = as[i].x;
  for (int i = 0; i < bsLen; ++i) bs0[i] = bs[i].x;
  const vector<ModInt<M0>> cs0 = FFT0.convolve(as0, bs0);
  vector<ModInt<M1>> as1(asLen), bs1(bsLen);
  for (int i = 0; i < asLen; ++i) as1[i] = as[i].x;
  for (int i = 0; i < bsLen; ++i) bs1[i] = bs[i].x;
  const vector<ModInt<M1>> cs1 = FFT1.convolve(as1, bs1);
  vector<ModInt<M2>> as2(asLen), bs2(bsLen);
  for (int i = 0; i < asLen; ++i) as2[i] = as[i].x;
  for (int i = 0; i < bsLen; ++i) bs2[i] = bs[i].x;
  const vector<ModInt<M2>> cs2 = FFT2.convolve(as2, bs2);
  vector<Mint> cs(asLen + bsLen - 1);
  for (int i = 0; i < asLen + bsLen - 1; ++i) {
    cs[i] = garner<Mint>(cs0[i], cs1[i], cs2[i]);
  }
  return cs;
}


/*
  fix t != 0
  F[u] := Pr[u -> t]
  F[0] = 0
  F[t] = 1
  F[u] = \sum[i] P[i] F[u+e[i]]  (u != 0, t)
  
  F(x) = \sum[u] F[u] x^u
       = x^t + \sum[u!=0,t] F[u] x^u
       = x^t + \sum[u!=0,t] \sum[i] P[i] F[u+e[i]] x^u
       = x^t + \sum[v] \sum[i] P[i] F[v] x^(v-e[i]) - \sum[i] P[i] F[e[i]] - \sum[i] P[i] F[t+e[i]] x^t
       =: G(x) F(x) + a + b x^t
  G(x) = \sum[i] P[i] x^(-i)
  Pr[start -> t] = -a
  
  F(1) = G(1) F(1) + a + b
  G(1) = 1
  b = -a
  (1 - G(x)) F(x) = a (x^0 - x^t)
  
  w: vector of roots of unity
  H(w) = 1 - w^t
  F(w) = (1 - w^t) / (1 - G(w))  (w != 1)
  F(1) = -\sum[w!=1] F(w)
  F[t] = (1/M) (F(1) + \sum[w!=1] w^-t F(w))
       = (1/M) \sum[w!=1] (w^(-t) - 2 + w^t) / (1 - G(w))
*/

int N, MO, I;
vector<int> L;
vector<Mint> P, D;

int M;
vector<int> LL;

// without 1/n
namespace dft1 {
constexpr int THR_N = 1;
int n;
Mint ww[THR_N][THR_N];
vector<Mint> w1s, w2s, invW1s, invW2s;
void build(int n_, Mint w, bool inv) {
  n = n_;
  if (inv) w = w.inv();
  if (n < THR_N) {
    Mint wi = 1;
    for (int i = 0; i < n; ++i) {
      ww[i][0] = 1;
      for (int j = 1; j < n; ++j) {
        ww[i][j] = ww[i][j - 1] * wi;
      }
      wi *= w;
    }
  } else {
    const Mint invW = w.inv();
    w1s.resize(2 * n - 1);
    w2s.resize(2 * n - 1);
    invW1s.resize(2 * n - 1);
    invW2s.resize(2 * n - 1);
    w1s[0] = w2s[0] = invW1s[0] = invW2s[0] = 1;
    for (int i = 1; i < 2 * n - 1; ++i) {
      w1s[i] = w1s[i - 1] * w;
      w2s[i] = w2s[i - 1] * w1s[i - 1];
      invW1s[i] = invW1s[i - 1] * invW;
      invW2s[i] = invW2s[i - 1] * invW1s[i - 1];
    }
  }
}
void run(vector<Mint> &fs) {
  if (n < THR_N) {
    vector<Mint> gs(n, 0);
    for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) gs[i] += ww[i][j] * fs[j];
    fs = gs;
  } else {
    for (int i = 0; i < n; ++i) fs[i] *= invW2s[i];
    reverse(fs.begin(), fs.end());
    fs = convolve(w2s, fs);
    fs.erase(fs.begin(), fs.begin() + (n - 1));
    fs.resize(n);
    for (int i = 0; i < n; ++i) fs[i] *= invW2s[i];
  }
}
}  // dft1

void dft2(vector<Mint> &fs, bool inv) {
  for (int i = 0; i < N; ++i) {
    dft1::build(L[i], D[i], inv);
    for (int u = 0; u < M; u += LL[i + 1]) for (int v = u; v < u + LL[i]; ++v) {
      vector<Mint> gs(L[i]);
      for (int k = 0; k < L[i]; ++k) gs[k] = fs[v + k * LL[i]];
      dft1::run(gs);
      for (int k = 0; k < L[i]; ++k) fs[v + k * LL[i]] = gs[k];
    }
  }
  if (inv) {
    const Mint invM = Mint(M).inv();
    for (int u = 0; u < M; ++u) {
      fs[u] *= invM;
    }
  }
}

int main() {
  for (; ~scanf("%d%d%d", &N, &MO, &I); ) {
    Mint::setM(MO);
    L.resize(N);
    P.resize(N);
    D.resize(N);
    for (int i = 0; i < N; ++i) {
      scanf("%d%u%u", &L[i], &P[i].x, &D[i].x);
    }
    
    {
      Mint sumP = 0;
      for (int i = 0; i < N; ++i) {
        sumP += P[i];
      }
      const Mint invSumP = sumP.inv();
      for (int i = 0; i < N; ++i) {
        P[i] *= invSumP;
      }
    }
    
    LL.resize(N + 1);
    LL[0] = 1;
    for (int i = 0; i < N; ++i) {
      LL[i + 1] = LL[i] * L[i];
    }
    M = LL[N];
cerr<<"N = "<<N<<", M = "<<M<<", I = "<<I<<", L = "<<L<<endl;
    
    vector<Mint> gs(M, 0);
    gs[0] += 1;
    for (int i = 0; i < N; ++i) {
      gs[(L[i] - 1) * LL[i]] -= P[i];
    }
    dft2(gs, false);
    assert(!gs[0]);
    for (int u = 1; u < M; ++u) {
      assert(gs[u]);
      gs[u] = gs[u].inv();
    }
    dft2(gs, true);
    
    Mint ans = 1;
    for (int t = 1; t < M; ++t) {
      int tt = 0;
      for (int i = 0; i < N; ++i) {
        tt += ((L[i] - t / LL[i] % L[i]) % L[i]) * LL[i];
      }
      const Mint f = gs[t] - 2 * gs[0] + gs[tt];
      assert(f);
      ans -= f.inv();
    }
    printf("%u\n", ans.x);
  }
  return 0;
}

详细

Subtask #1:

score: 2
Accepted

Test #1:

score: 2
Accepted
time: 178ms
memory: 21548kb

input:

1 1040016149 1
114514 86782 975423317

output:

114514

result:

ok 1 number(s): "114514"

Subtask #2:

score: 8
Accepted

Test #2:

score: 8
Accepted
time: 1ms
memory: 3800kb

input:

1 917829557 2
7 409960 84299716

output:

7

result:

ok 1 number(s): "7"

Test #3:

score: 0
Accepted
time: 1ms
memory: 3732kb

input:

2 1021037011 2
3 673845 456586624
2 557323 1021037010

output:

325765596

result:

ok 1 number(s): "325765596"

Test #4:

score: 0
Accepted
time: 1ms
memory: 3740kb

input:

2 974672641 2
2 919159 974672640
4 945246 788001635

output:

206340059

result:

ok 1 number(s): "206340059"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3744kb

input:

3 942949663 2
2 900268 942949662
2 314911 942949662
2 488210 942949662

output:

697012073

result:

ok 1 number(s): "697012073"

Subtask #3:

score: 10
Accepted

Dependency #2:

100%
Accepted

Test #6:

score: 10
Accepted
time: 1ms
memory: 3820kb

input:

2 1040469361 3
3 607396 156553896
20 622587 835710357

output:

212836966

result:

ok 1 number(s): "212836966"

Test #7:

score: 0
Accepted
time: 1ms
memory: 3796kb

input:

6 932284961 3
2 976786 932284960
2 296977 932284960
2 640048 932284960
2 883210 932284960
2 178849 932284960
2 292747 932284960

output:

767388139

result:

ok 1 number(s): "767388139"

Test #8:

score: 0
Accepted
time: 1ms
memory: 3744kb

input:

3 972511489 3
4 270846 275326774
6 901035 3644392
3 450749 3644391

output:

386017324

result:

ok 1 number(s): "386017324"

Test #9:

score: 0
Accepted
time: 1ms
memory: 3772kb

input:

4 952654361 3
4 353315 567578568
2 265582 952654360
2 429959 952654360
5 62389 840524015

output:

942289666

result:

ok 1 number(s): "942289666"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3752kb

input:

3 969859729 3
3 342202 745159492
9 270897 686337727
3 216159 745159492

output:

184152966

result:

ok 1 number(s): "184152966"

Test #11:

score: 0
Accepted
time: 1ms
memory: 3796kb

input:

3 953647801 3
7 943891 755724372
4 151642 109446108
3 775757 89434891

output:

811899700

result:

ok 1 number(s): "811899700"

Test #12:

score: 0
Accepted
time: 1ms
memory: 3784kb

input:

3 1029304937 3
4 54303 379091496
2 193487 1029304936
11 607170 762447147

output:

626421900

result:

ok 1 number(s): "626421900"

Test #13:

score: 0
Accepted
time: 1ms
memory: 3744kb

input:

3 904885561 3
3 554090 196965144
2 945499 904885560
15 747460 217098071

output:

676301027

result:

ok 1 number(s): "676301027"

Test #14:

score: 0
Accepted
time: 1ms
memory: 3792kb

input:

6 986788531 3
2 522554 986788530
2 316305 986788530
2 94022 986788530
2 249256 986788530
2 625960 986788530
3 405298 837112629

output:

441366932

result:

ok 1 number(s): "441366932"

Test #15:

score: 0
Accepted
time: 1ms
memory: 3772kb

input:

2 1023351421 3
20 337665 403345072
5 40276 480359844

output:

1002751099

result:

ok 1 number(s): "1002751099"

Subtask #4:

score: 8
Accepted

Test #16:

score: 8
Accepted
time: 0ms
memory: 3816kb

input:

2 998244353 4
4 61786 911660635
238 287234 493901365

output:

223055892

result:

ok 1 number(s): "223055892"

Test #17:

score: 0
Accepted
time: 3ms
memory: 3772kb

input:

2 998244353 4
7 25813 683624219
112 96355 961521397

output:

97474170

result:

ok 1 number(s): "97474170"

Test #18:

score: 0
Accepted
time: 2ms
memory: 3764kb

input:

2 998244353 4
56 87114 727469702
14 24912 983690962

output:

592417090

result:

ok 1 number(s): "592417090"

Test #19:

score: 0
Accepted
time: 2ms
memory: 3760kb

input:

2 998244353 4
32 147776 617152567
28 775643 859007132

output:

566596649

result:

ok 1 number(s): "566596649"

Test #20:

score: 0
Accepted
time: 2ms
memory: 3808kb

input:

2 998244353 4
17 545281 464157011
56 816599 3898319

output:

469481867

result:

ok 1 number(s): "469481867"

Subtask #5:

score: 10
Accepted

Test #21:

score: 10
Accepted
time: 1ms
memory: 3752kb

input:

7 1023063703 5
2 265354 1023063702
2 526733 1023063702
2 685323 1023063702
2 856929 1023063702
2 116643 1023063702
2 909182 1023063702
2 533391 1023063702

output:

72258463

result:

ok 1 number(s): "72258463"

Test #22:

score: 0
Accepted
time: 2ms
memory: 3744kb

input:

8 909973201 5
2 803753 909973200
2 909951 909973200
2 686418 909973200
2 751586 909973200
2 596938 909973200
2 931460 909973200
2 613477 909973200
2 716815 909973200

output:

446664445

result:

ok 1 number(s): "446664445"

Test #23:

score: 0
Accepted
time: 4ms
memory: 3752kb

input:

9 1016555329 5
2 955958 1016555328
2 672234 1016555328
2 870436 1016555328
2 31291 1016555328
2 206731 1016555328
2 727640 1016555328
2 134125 1016555328
2 893866 1016555328
2 138706 1016555328

output:

808692189

result:

ok 1 number(s): "808692189"

Test #24:

score: 0
Accepted
time: 8ms
memory: 3828kb

input:

10 1007394217 5
2 961834 1007394216
2 209391 1007394216
2 715582 1007394216
2 553353 1007394216
2 213960 1007394216
2 589617 1007394216
2 666503 1007394216
2 407731 1007394216
2 152967 1007394216
2 848445 1007394216

output:

9280802

result:

ok 1 number(s): "9280802"

Test #25:

score: 0
Accepted
time: 8ms
memory: 3752kb

input:

10 968522221 5
2 21932 968522220
2 675564 968522220
2 378437 968522220
2 81037 968522220
2 963992 968522220
2 311430 968522220
2 699121 968522220
2 45417 968522220
2 275308 968522220
2 411066 968522220

output:

692011298

result:

ok 1 number(s): "692011298"

Subtask #6:

score: 12
Accepted

Dependency #3:

100%
Accepted

Dependency #4:

100%
Accepted

Dependency #5:

100%
Accepted

Test #26:

score: 12
Accepted
time: 3ms
memory: 3788kb

input:

4 972401761 6
2 972661 972401760
15 255992 126248662
12 878880 606133410
2 224371 972401760

output:

115576065

result:

ok 1 number(s): "115576065"

Test #27:

score: 0
Accepted
time: 3ms
memory: 3760kb

input:

4 904442113 6
4 455381 759185044
32 370753 618464921
3 500887 212337160
2 124789 904442112

output:

423186989

result:

ok 1 number(s): "423186989"

Test #28:

score: 0
Accepted
time: 2ms
memory: 3848kb

input:

2 1044288001 6
200 909466 831914154
4 635879 349141366

output:

992703804

result:

ok 1 number(s): "992703804"

Test #29:

score: 0
Accepted
time: 3ms
memory: 3772kb

input:

3 995557889 6
208 995170 150328412
2 962966 995557888
2 870197 995557888

output:

559608682

result:

ok 1 number(s): "559608682"

Test #30:

score: 0
Accepted
time: 3ms
memory: 3800kb

input:

3 926933113 6
4 600105 859154928
24 395570 903534782
9 869027 266882176

output:

586077830

result:

ok 1 number(s): "586077830"

Test #31:

score: 0
Accepted
time: 0ms
memory: 3780kb

input:

4 1018608697 6
28 136320 512857858
2 391617 1018608696
2 416876 1018608696
8 640950 421343802

output:

275871736

result:

ok 1 number(s): "275871736"

Test #32:

score: 0
Accepted
time: 4ms
memory: 3772kb

input:

5 909759601 6
10 839897 853552356
2 969093 909759600
4 795795 674156232
2 423545 909759600
6 600787 419741593

output:

241411297

result:

ok 1 number(s): "241411297"

Test #33:

score: 0
Accepted
time: 4ms
memory: 3760kb

input:

4 998016823 6
27 155873 262940187
2 158035 998016822
9 202421 553668428
2 21539 998016822

output:

118420215

result:

ok 1 number(s): "118420215"

Test #34:

score: 0
Accepted
time: 4ms
memory: 3764kb

input:

4 910702297 6
3 890425 906157449
24 469847 206340805
2 422607 910702296
7 67244 714860697

output:

836808927

result:

ok 1 number(s): "836808927"

Test #35:

score: 0
Accepted
time: 2ms
memory: 3836kb

input:

2 965490689 6
4 468310 246473372
256 256288 754419658

output:

20502222

result:

ok 1 number(s): "20502222"

Subtask #7:

score: 8
Accepted

Dependency #6:

100%
Accepted

Test #36:

score: 8
Accepted
time: 17ms
memory: 3804kb

input:

4 1040169409 7
2 835454 1040169408
3 772774 636723579
4 342482 586400067
192 334236 48598666

output:

836620519

result:

ok 1 number(s): "836620519"

Test #37:

score: 0
Accepted
time: 22ms
memory: 3868kb

input:

5 1001291201 7
2 380607 1001291200
8 447454 176535093
32 876312 112032651
5 769899 24926973
2 833606 1001291200

output:

773216067

result:

ok 1 number(s): "773216067"

Test #38:

score: 0
Accepted
time: 13ms
memory: 3848kb

input:

3 1027170721 7
108 162949 530583958
8 335705 915297592
6 762677 864984184

output:

944135384

result:

ok 1 number(s): "944135384"

Test #39:

score: 0
Accepted
time: 17ms
memory: 3860kb

input:

4 965986561 7
672 958339 534727307
2 543173 965986560
2 884696 965986560
2 78668 965986560

output:

731390335

result:

ok 1 number(s): "731390335"

Test #40:

score: 0
Accepted
time: 22ms
memory: 3820kb

input:

5 1033312897 7
2 847300 1033312896
22 496446 176836498
4 545327 842729668
4 825711 842729668
8 55521 221623844

output:

111025694

result:

ok 1 number(s): "111025694"

Test #41:

score: 0
Accepted
time: 16ms
memory: 3832kb

input:

4 974073601 7
80 688089 65481914
6 743381 676241902
2 457097 974073600
6 433647 676241902

output:

20654041

result:

ok 1 number(s): "20654041"

Test #42:

score: 0
Accepted
time: 23ms
memory: 3856kb

input:

4 988969921 7
192 682290 823722245
2 231872 988969920
4 644835 908425877
4 599428 80544044

output:

327364135

result:

ok 1 number(s): "327364135"

Test #43:

score: 0
Accepted
time: 19ms
memory: 3796kb

input:

4 905233921 7
10 797498 529875391
40 404554 190390703
8 51869 591750273
2 267795 905233920

output:

840539530

result:

ok 1 number(s): "840539530"

Test #44:

score: 0
Accepted
time: 24ms
memory: 3880kb

input:

4 995124209 7
8 15181 811988629
4 25011 700264330
4 29108 700264330
52 401060 745256833

output:

704350003

result:

ok 1 number(s): "704350003"

Test #45:

score: 0
Accepted
time: 18ms
memory: 3840kb

input:

3 942316129 7
12 857153 473633986
72 777888 329202798
8 483455 869896725

output:

388869095

result:

ok 1 number(s): "388869095"

Test #46:

score: 0
Accepted
time: 17ms
memory: 3908kb

input:

3 1035901441 7
896 435538 726832882
4 15200 453561200
2 924673 1035901440

output:

938917469

result:

ok 1 number(s): "938917469"

Test #47:

score: 0
Accepted
time: 16ms
memory: 3960kb

input:

2 1019232001 7
4 673885 248868967
1920 754816 341141141

output:

476117109

result:

ok 1 number(s): "476117109"

Test #48:

score: 0
Accepted
time: 17ms
memory: 4072kb

input:

2 957116737 7
3888 412700 63632954
2 333017 957116736

output:

21716613

result:

ok 1 number(s): "21716613"

Test #49:

score: 0
Accepted
time: 20ms
memory: 3804kb

input:

2 1018688833 7
168 928533 47528245
48 431265 446651888

output:

377651323

result:

ok 1 number(s): "377651323"

Test #50:

score: 0
Accepted
time: 18ms
memory: 3960kb

input:

2 930680833 7
2048 213064 343165841
4 619665 206937758

output:

710731553

result:

ok 1 number(s): "710731553"

Subtask #8:

score: 6
Accepted

Dependency #4:

100%
Accepted

Test #51:

score: 6
Accepted
time: 1124ms
memory: 40408kb

input:

2 998244353 8
229376 553453 626702417
2 148397 998244352

output:

942359197

result:

ok 1 number(s): "942359197"

Test #52:

score: 0
Accepted
time: 1003ms
memory: 5428kb

input:

2 998244353 8
544 790355 550966489
896 187218 528905230

output:

821359943

result:

ok 1 number(s): "821359943"

Test #53:

score: 0
Accepted
time: 1007ms
memory: 5900kb

input:

2 998244353 8
3808 61621 800472218
128 340446 90326106

output:

313652514

result:

ok 1 number(s): "313652514"

Test #54:

score: 0
Accepted
time: 1053ms
memory: 5912kb

input:

2 998244353 8
3584 84070 488937671
136 502854 265129779

output:

311354359

result:

ok 1 number(s): "311354359"

Test #55:

score: 0
Accepted
time: 1035ms
memory: 5852kb

input:

2 998244353 8
128 745552 249745217
3808 24183 979437006

output:

800304170

result:

ok 1 number(s): "800304170"

Subtask #9:

score: 8
Accepted

Dependency #8:

100%
Accepted

Test #56:

score: 8
Accepted
time: 529ms
memory: 4596kb

input:

2 998244353 9
1024 890631 674816215
256 505634 280778420

output:

252098958

result:

ok 1 number(s): "252098958"

Test #57:

score: 0
Accepted
time: 1348ms
memory: 5276kb

input:

3 998244353 9
256 272030 680107844
952 390160 81552934
2 248471 998244352

output:

659256944

result:

ok 1 number(s): "659256944"

Test #58:

score: 0
Accepted
time: 1354ms
memory: 7372kb

input:

3 998244353 9
14336 680183 785721917
8 733319 509520358
4 727219 86583718

output:

685697293

result:

ok 1 number(s): "685697293"

Test #59:

score: 0
Accepted
time: 1083ms
memory: 14184kb

input:

2 998244353 9
60928 148823 499088267
8 950907 372528824

output:

777164685

result:

ok 1 number(s): "777164685"

Test #60:

score: 0
Accepted
time: 672ms
memory: 4504kb

input:

3 998244353 9
4 486207 86583718
1904 558847 739086177
32 759123 910687289

output:

57611731

result:

ok 1 number(s): "57611731"

Test #61:

score: 0
Accepted
time: 959ms
memory: 4556kb

input:

4 998244353 9
2 17862 998244352
2 536183 998244352
136 576612 607112440
512 287212 914464108

output:

714839257

result:

ok 1 number(s): "714839257"

Test #62:

score: 0
Accepted
time: 1993ms
memory: 5344kb

input:

5 998244353 9
4 931852 86583718
4 915233 86583718
7 355297 14553391
34 970627 511225650
128 974908 381262342

output:

711640581

result:

ok 1 number(s): "711640581"

Test #63:

score: 0
Accepted
time: 2366ms
memory: 5280kb

input:

6 998244353 9
238 953000 458625863
4 188309 911660635
2 335975 998244352
8 787731 509520358
4 209142 86583718
8 365300 509520358

output:

713841626

result:

ok 1 number(s): "713841626"

Test #64:

score: 0
Accepted
time: 967ms
memory: 4300kb

input:

5 998244353 9
4 101133 86583718
32 902625 666194801
34 58866 995719509
7 224335 779057549
8 994132 488723995

output:

365734961

result:

ok 1 number(s): "365734961"

Test #65:

score: 0
Accepted
time: 2524ms
memory: 5148kb

input:

7 998244353 9
14 235694 983690962
8 744104 625715529
8 637536 625715529
8 100975 488723995
4 483443 911660635
2 863459 998244352
8 618213 509520358

output:

704893603

result:

ok 1 number(s): "704893603"

Test #66:

score: 0
Accepted
time: 1364ms
memory: 4356kb

input:

6 998244353 9
8 237280 625715529
4 164854 911660635
4 222248 911660635
4 542353 86583718
4 863270 911660635
136 555788 418624303

output:

24164169

result:

ok 1 number(s): "24164169"

Test #67:

score: 0
Accepted
time: 1270ms
memory: 4316kb

input:

7 998244353 9
112 335624 263656516
2 404823 998244352
2 612984 998244352
8 460719 509520358
4 759780 911660635
2 525332 998244352
8 561035 625715529

output:

831206565

result:

ok 1 number(s): "831206565"

Test #68:

score: 0
Accepted
time: 1075ms
memory: 4268kb

input:

6 998244353 9
14 275099 314620134
8 772812 372528824
8 546908 625715529
2 662447 998244352
16 164487 661054123
8 993159 488723995

output:

50327783

result:

ok 1 number(s): "50327783"

Test #69:

score: 0
Accepted
time: 2770ms
memory: 4332kb

input:

16 998244353 9
2 223902 998244352
2 356273 998244352
7 102151 530734902
2 124503 998244352
2 231032 998244352
2 764641 998244352
2 439592 998244352
2 626656 998244352
2 827889 998244352
2 683287 998244352
2 527533 998244352
2 96136 998244352
2 595457 998244352
2 630440 998244352
2 402492 998244352
2...

output:

662143805

result:

ok 1 number(s): "662143805"

Test #70:

score: 0
Accepted
time: 866ms
memory: 77984kb

input:

1 998244353 9
487424 494448 849013356

output:

487424

result:

ok 1 number(s): "487424"

Subtask #10:

score: 10
Accepted

Dependency #5:

100%
Accepted

Test #71:

score: 10
Accepted
time: 366ms
memory: 3748kb

input:

15 969740263 10
2 373621 969740262
2 946569 969740262
2 253224 969740262
2 664561 969740262
2 611912 969740262
2 204304 969740262
2 746434 969740262
2 336578 969740262
2 200784 969740262
2 557632 969740262
2 651211 969740262
2 559106 969740262
2 610198 969740262
2 799763 969740262
2 908557 969740262

output:

411647692

result:

ok 1 number(s): "411647692"

Test #72:

score: 0
Accepted
time: 776ms
memory: 3756kb

input:

16 991926851 10
2 712792 991926850
2 396612 991926850
2 850616 991926850
2 678097 991926850
2 939368 991926850
2 978032 991926850
2 226041 991926850
2 545440 991926850
2 261283 991926850
2 142065 991926850
2 350488 991926850
2 915911 991926850
2 355737 991926850
2 57300 991926850
2 584284 991926850
...

output:

529574589

result:

ok 1 number(s): "529574589"

Test #73:

score: 0
Accepted
time: 1659ms
memory: 3784kb

input:

17 1004734669 10
2 774339 1004734668
2 761099 1004734668
2 350815 1004734668
2 956243 1004734668
2 13259 1004734668
2 547506 1004734668
2 459082 1004734668
2 817986 1004734668
2 724570 1004734668
2 935942 1004734668
2 560680 1004734668
2 520194 1004734668
2 260207 1004734668
2 852274 1004734668
2 56...

output:

426830028

result:

ok 1 number(s): "426830028"

Test #74:

score: 0
Accepted
time: 3486ms
memory: 4236kb

input:

18 934497901 10
2 116198 934497900
2 820160 934497900
2 77657 934497900
2 611949 934497900
2 498059 934497900
2 471331 934497900
2 90116 934497900
2 413650 934497900
2 938011 934497900
2 455321 934497900
2 808088 934497900
2 467664 934497900
2 1790 934497900
2 746901 934497900
2 649412 934497900
2 9...

output:

132988262

result:

ok 1 number(s): "132988262"

Test #75:

score: 0
Accepted
time: 3538ms
memory: 4324kb

input:

18 997115969 10
2 677091 997115968
2 182601 997115968
2 859073 997115968
2 844740 997115968
2 486819 997115968
2 239614 997115968
2 605204 997115968
2 108805 997115968
2 547452 997115968
2 78461 997115968
2 662608 997115968
2 930644 997115968
2 950692 997115968
2 223335 997115968
2 405750 997115968
...

output:

576918483

result:

ok 1 number(s): "576918483"

Subtask #11:

score: 12
Accepted

Dependency #10:

100%
Accepted

Test #76:

score: 12
Accepted
time: 600ms
memory: 4076kb

input:

4 1032431401 11
22 699510 258557651
35 925197 147665025
12 561090 444222341
22 908847 573733633

output:

99475181

result:

ok 1 number(s): "99475181"

Test #77:

score: 0
Accepted
time: 1131ms
memory: 4240kb

input:

5 990258361 11
26 569351 462961367
6 80029 91923647
28 860702 695739176
13 338538 474254325
5 292764 939161661

output:

153420054

result:

ok 1 number(s): "153420054"

Test #78:

score: 0
Accepted
time: 964ms
memory: 4520kb

input:

5 942013381 11
11 779531 345150756
6 675857 348180154
5 505879 317895062
22 723269 596862625
42 880286 229109913

output:

402752746

result:

ok 1 number(s): "402752746"

Test #79:

score: 0
Accepted
time: 1606ms
memory: 4872kb

input:

5 962729461 11
3 778362 370070893
10 605034 216793322
11 337490 739455560
28 33633 871490348
44 355775 427272628

output:

591659186

result:

ok 1 number(s): "591659186"

Test #80:

score: 0
Accepted
time: 2064ms
memory: 5160kb

input:

6 980201041 11
6 509634 440462155
4 665806 169208619
13 174944 769308185
13 802268 979901095
7 735659 594468251
15 716016 587533173

output:

196440161

result:

ok 1 number(s): "196440161"

Test #81:

score: 0
Accepted
time: 1793ms
memory: 5128kb

input:

5 1006335331 11
33 465476 412382195
26 62659 649367959
10 379814 435149835
26 32613 193899237
2 362546 1006335330

output:

767433541

result:

ok 1 number(s): "767433541"

Test #82:

score: 0
Accepted
time: 2338ms
memory: 5052kb

input:

7 1025362801 11
2 103702 1025362800
3 230121 393065710
3 866490 393065710
5 996945 438528644
7 75346 889862126
22 727767 723881393
33 744345 331906350

output:

624948293

result:

ok 1 number(s): "624948293"

Test #83:

score: 0
Accepted
time: 2184ms
memory: 5080kb

input:

6 927400321 11
34 690193 633272049
14 271947 158466609
5 29155 48767577
3 680991 558580854
34 504089 50083535
2 269784 927400320

output:

529445988

result:

ok 1 number(s): "529445988"

Test #84:

score: 0
Accepted
time: 1117ms
memory: 4264kb

input:

6 1026720001 11
5 856582 192380835
4 275465 826256064
2 577506 1026720000
30 726584 514798836
8 226229 122245655
24 708136 70845584

output:

196483828

result:

ok 1 number(s): "196483828"

Test #85:

score: 0
Accepted
time: 1602ms
memory: 4580kb

input:

7 1048614337 11
8 81957 714673501
28 132495 421563936
2 981004 1048614336
2 730100 1048614336
2 504455 1048614336
42 710077 567746601
4 890757 467835333

output:

717647484

result:

ok 1 number(s): "717647484"

Test #86:

score: 0
Accepted
time: 1451ms
memory: 4648kb

input:

6 1048924801 11
10 89570 521413525
4 496152 501406936
2 700711 1048924800
8 812007 592618035
48 653132 179779517
10 998767 343279042

output:

956663514

result:

ok 1 number(s): "956663514"

Test #87:

score: 0
Accepted
time: 1342ms
memory: 4612kb

input:

5 1010095921 11
6 530393 687121127
30 440107 843763139
12 684275 324267076
4 691228 475079850
40 649981 506902675

output:

525817982

result:

ok 1 number(s): "525817982"

Test #88:

score: 0
Accepted
time: 2012ms
memory: 4832kb

input:

7 935718661 11
20 799816 725732576
4 922930 747355853
2 463829 935718660
2 766609 935718660
4 175830 747355853
15 238560 611128660
20 768805 48007705

output:

339402274

result:

ok 1 number(s): "339402274"

Test #89:

score: 0
Accepted
time: 2383ms
memory: 5048kb

input:

7 904611457 11
3 896340 681718948
4 145563 9216110
8 315633 570585560
42 124915 772177444
2 790943 904611456
7 756555 392957847
8 680504 387697417

output:

513967674

result:

ok 1 number(s): "513967674"

Test #90:

score: 0
Accepted
time: 2196ms
memory: 5128kb

input:

7 954670081 11
2 181551 954670080
6 601961 633710667
20 415802 518488008
16 36518 470515757
6 527605 633710667
2 772131 954670080
10 592493 212387045

output:

845226312

result:

ok 1 number(s): "845226312"

Subtask #12:

score: 6
Accepted

Dependency #7:

100%
Accepted

Dependency #9:

100%
Accepted

Dependency #11:

100%
Accepted

Test #91:

score: 6
Accepted
time: 693ms
memory: 6224kb

input:

2 940283521 12
10128 916891 881732406
40 319509 229502633

output:

819210562

result:

ok 1 number(s): "819210562"

Test #92:

score: 0
Accepted
time: 1238ms
memory: 5784kb

input:

3 964109281 12
4460 529113 561201332
2 584568 964109280
48 959674 576980669

output:

185961710

result:

ok 1 number(s): "185961710"

Test #93:

score: 0
Accepted
time: 1217ms
memory: 5148kb

input:

3 985543201 12
12 423534 630035952
80 534310 861430626
454 886448 982755151

output:

158666490

result:

ok 1 number(s): "158666490"

Test #94:

score: 0
Accepted
time: 1549ms
memory: 5428kb

input:

4 974715601 12
10 822569 896595666
12 381386 199317125
2 592870 974715600
1832 873842 760178656

output:

512490541

result:

ok 1 number(s): "512490541"

Test #95:

score: 0
Accepted
time: 1400ms
memory: 5528kb

input:

4 959195761 12
2330 338858 281585961
4 224822 442548969
8 161907 456904616
6 171896 132568499

output:

901449688

result:

ok 1 number(s): "901449688"

Test #96:

score: 0
Accepted
time: 1936ms
memory: 5344kb

input:

5 906775561 12
5 108955 894444589
8 23657 502875925
12 69485 110286081
2 298454 906775560
478 562053 185780167

output:

117102764

result:

ok 1 number(s): "117102764"

Test #97:

score: 0
Accepted
time: 1755ms
memory: 5048kb

input:

5 921044161 12
32 488663 76321973
5 345291 507072799
6 357954 895020767
241 381073 310674276
2 516952 921044160

output:

21557079

result:

ok 1 number(s): "21557079"

Test #98:

score: 0
Accepted
time: 1447ms
memory: 5316kb

input:

4 960105121 12
20 61235 629292865
502 758953 338610188
6 31315 307440177
8 309913 475159507

output:

539745126

result:

ok 1 number(s): "539745126"

Test #99:

score: 0
Accepted
time: 1887ms
memory: 5296kb

input:

5 1004489641 12
257 442823 397311768
8 616213 469865403
4 50596 408619556
20 322882 375967564
3 453830 583595012

output:

526555385

result:

ok 1 number(s): "526555385"

Test #100:

score: 0
Accepted
time: 1684ms
memory: 5900kb

input:

4 1002845101 12
30 937948 43797392
4036 664622 563453039
2 76177 1002845100
2 992569 1002845100

output:

235148813

result:

ok 1 number(s): "235148813"

Test #101:

score: 0
Accepted
time: 1693ms
memory: 5616kb

input:

4 936437461 12
30 958117 452004031
4 233553 578995550
2 800696 936437460
2026 445979 901166189

output:

842824070

result:

ok 1 number(s): "842824070"

Test #102:

score: 0
Accepted
time: 1576ms
memory: 5924kb

input:

4 967479361 12
5095 693179 480545460
4 557405 24233647
8 145874 594769868
3 287627 802063289

output:

136118600

result:

ok 1 number(s): "136118600"

Test #103:

score: 0
Accepted
time: 1796ms
memory: 6456kb

input:

4 925761121 12
6126 135605 711742328
4 428900 296402215
2 586889 925761120
10 492678 408666890

output:

573527672

result:

ok 1 number(s): "573527672"

Test #104:

score: 0
Accepted
time: 2276ms
memory: 5496kb

input:

6 1041722401 12
5 164243 565473986
2 669751 1041722400
6 495765 971750216
2 771390 1041722400
4 270828 827058779
1031 895005 554360088

output:

721402587

result:

ok 1 number(s): "721402587"

Test #105:

score: 0
Accepted
time: 1961ms
memory: 5712kb

input:

5 997939981 12
3 835560 887273591
10 538742 92659661
4 310465 448614931
2 123413 997939980
2066 103520 853352

output:

993763929

result:

ok 1 number(s): "993763929"

Test #106:

score: 0
Accepted
time: 1951ms
memory: 5628kb

input:

5 949188841 12
2 141270 949188840
20 493997 317310843
2 853188 949188840
2078 838599 833342537
3 552003 403814483

output:

889441128

result:

ok 1 number(s): "889441128"

Test #107:

score: 0
Accepted
time: 1357ms
memory: 4080kb

input:

8 1036067761 12
10 416938 177402038
4 559871 951496097
12 175026 919588307
4 595348 951496097
2 982924 1036067760
2 405420 1036067760
4 347313 951496097
7 946965 429684228

output:

553020182

result:

ok 1 number(s): "553020182"

Test #108:

score: 0
Accepted
time: 1840ms
memory: 4620kb

input:

8 1004240161 12
6 296913 663971589
6 366581 663971589
8 147391 748751600
2 955732 1004240160
10 85111 577005150
2 931695 1004240160
2 79627 1004240160
14 934105 575837948

output:

440759412

result:

ok 1 number(s): "440759412"

Test #109:

score: 0
Accepted
time: 2073ms
memory: 4556kb

input:

8 953156161 12
2 749780 953156160
2 666434 953156160
2 664135 953156160
8 578893 936686511
6 48776 789310653
4 980429 190825120
2 470040 953156160
110 859649 241053346

output:

774169072

result:

ok 1 number(s): "774169072"

Test #110:

score: 0
Accepted
time: 2501ms
memory: 4792kb

input:

8 979767361 12
2 425831 979767360
16 178102 9165626
2 240448 979767360
2 797490 979767360
2 120283 979767360
30 335709 674074218
2 760289 979767360
26 320926 553345576

output:

166534822

result:

ok 1 number(s): "166534822"

Test #111:

score: 0
Accepted
time: 3051ms
memory: 5056kb

input:

9 1040921701 12
2 342279 1040921700
2 575382 1040921700
12 338599 38878157
2 289503 1040921700
4 390795 195107884
2 210642 1040921700
70 512604 525671225
4 612237 845813817
2 953087 1040921700

output:

478615806

result:

ok 1 number(s): "478615806"

Test #112:

score: 0
Accepted
time: 2731ms
memory: 5136kb

input:

8 902221321 12
2 727095 902221320
11 566951 570627224
2 207388 902221320
2 217661 902221320
21 171322 496957039
4 328618 364571187
8 67174 659903664
8 35381 349978672

output:

325234098

result:

ok 1 number(s): "325234098"

Test #113:

score: 0
Accepted
time: 3216ms
memory: 5052kb

input:

9 1011754801 12
7 238495 134006536
4 768617 691946137
18 537125 233835973
2 584327 1011754800
2 460415 1011754800
2 701739 1011754800
2 321821 1011754800
3 168496 485383365
20 21593 396687980

output:

790558667

result:

ok 1 number(s): "790558667"

Test #114:

score: 0
Accepted
time: 831ms
memory: 78596kb

input:

1 952414649 12
493991 642637 798174221

output:

493991

result:

ok 1 number(s): "493991"

Test #115:

score: 0
Accepted
time: 1325ms
memory: 5340kb

input:

3 996787007 12
67 388369 991505886
83 593046 106506264
89 765490 171907274

output:

646679314

result:

ok 1 number(s): "646679314"

Test #116:

score: 0
Accepted
time: 1101ms
memory: 6500kb

input:

2 1039371559 12
79 92678 336932966
6283 314443 261579480

output:

989406346

result:

ok 1 number(s): "989406346"

Test #117:

score: 0
Accepted
time: 1336ms
memory: 5392kb

input:

3 918529841 12
79 65267 903684432
71 677401 582535550
89 398315 541715787

output:

573181569

result:

ok 1 number(s): "573181569"

Test #118:

score: 0
Accepted
time: 937ms
memory: 5168kb

input:

3 952251301 12
2310 73753 701445334
6 476123 663720703
26 61857 617439077

output:

287332583

result:

ok 1 number(s): "287332583"

Test #119:

score: 0
Accepted
time: 1180ms
memory: 4896kb

input:

4 928675441 12
132 498937 723714791
10 155140 688217707
2 183844 928675440
147 172893 735125766

output:

578553575

result:

ok 1 number(s): "578553575"

Test #120:

score: 0
Accepted
time: 1416ms
memory: 4848kb

input:

4 1035609121 12
6 768099 265932961
30 116268 505398613
182 612149 528298388
12 713349 392936811

output:

56807518

result:

ok 1 number(s): "56807518"

Test #121:

score: 0
Accepted
time: 1469ms
memory: 5052kb

input:

4 941579101 12
21 528779 473778183
225 928653 422638104
44 458686 687559060
2 886515 941579100

output:

752918048

result:

ok 1 number(s): "752918048"

Test #122:

score: 0
Accepted
time: 1712ms
memory: 5052kb

input:

5 923130601 12
2 45235 923130600
17 848848 239357641
30 973849 407373432
14 114480 423445517
30 324043 215683557

output:

484086499

result:

ok 1 number(s): "484086499"

Test #123:

score: 0
Accepted
time: 2008ms
memory: 5108kb

input:

6 1017989281 12
2 172394 1017989280
7 616861 1017508889
8 147746 183941737
66 2325 40564271
3 663516 74086722
20 473402 886782526

output:

557292174

result:

ok 1 number(s): "557292174"

Test #124:

score: 0
Accepted
time: 1717ms
memory: 5108kb

input:

5 997926931 12
42 90388 302627328
2 426939 997926930
10 118325 842908340
90 257428 556605406
6 975615 937490888

output:

777574268

result:

ok 1 number(s): "777574268"

Test #125:

score: 0
Accepted
time: 2104ms
memory: 5172kb

input:

6 914700151 12
65 842507 424930724
49 62967 642752500
6 137236 603809437
2 635830 914700150
2 808357 914700150
6 832292 310890715

output:

166163595

result:

ok 1 number(s): "166163595"

Test #126:

score: 0
Accepted
time: 1585ms
memory: 5376kb

input:

4 950019841 12
12 64558 109760691
15 667317 675243511
2 978550 950019840
1309 969513 640374249

output:

11564562

result:

ok 1 number(s): "11564562"

Test #127:

score: 0
Accepted
time: 2175ms
memory: 5040kb

input:

6 1017992641 12
38 934427 757399582
12 521945 68515975
3 770385 377978918
35 726573 606684726
5 639006 825344673
2 768656 1017992640

output:

793025770

result:

ok 1 number(s): "793025770"

Test #128:

score: 0
Accepted
time: 1670ms
memory: 5404kb

input:

4 1032431401 12
10 773519 634237118
2 473563 1032431400
546 391665 196833300
44 990054 519575415

output:

638516534

result:

ok 1 number(s): "638516534"

Test #129:

score: 0
Accepted
time: 2463ms
memory: 5368kb

input:

7 1038557521 12
5 556284 591278962
39 904101 1028030401
3 532965 165612271
6 825185 872945250
5 301722 956190774
2 256370 1038557520
14 618680 158028144

output:

486790345

result:

ok 1 number(s): "486790345"

Test #130:

score: 0
Accepted
time: 2580ms
memory: 5404kb

input:

7 907137001 12
6 380959 117708860
6 608834 789428142
3 633154 117708859
4 568352 850222375
55 970552 433791124
3 469231 789428141
7 953744 470478510

output:

627924542

result:

ok 1 number(s): "627924542"

Extra Test:

score: 0
Extra Test Passed