QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#186587 | #4908. 完全表示 | hos_lyric | 25 | 18ms | 40308kb | C++14 | 8.3kb | 2023-09-24 05:06:20 | 2023-09-24 05:06:20 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 164511353;
using Mint = ModInt<MO>;
constexpr int A = 41;
static_assert(((1LL << A) - 1) % MO == 0);
/*
F[n](x) := \sum[<T> = R^n] x^|T|
F[0](x) = 1 + x
pi: R^n = R^(n-1) * R -> R^(n-1)
<T> = R^n ==> <pi(T)> = R^(n-1)
F[n](x) = \sum[d|K] \mu(d) #{T | <\pi(T)> = R^(n-1) && T \cap \pi^-1(0) \subseteq d R}
= \sum[d|K] \mu(d) d^(n-1) F[n-1]((x+1)^(K/d)-1)
G[n](y) := F[n](y-1)
G[0](y) = y
G[n](y) = \sum[d|K] \mu(d) G[n-1](y^(K/d))
K = \prod[i] P[i]^E[i]
G[n](y) =: \sum[f] H[n][f] y^(P^f)
H[0](z) = 1
H[n](z) = (\prod[i] (z[i]^E[i] - P[i]^(n-1) z[i]^(E[i]-1))) H[n-1](z)
ans = (x (d/dx))^M F[N](x) |[x=1]
= \sum[k] S(M,k) x^k (d/dx)^k F[N](x) |[x=1]
= \sum[k] S(M,k) (d/dy)^k G[N](y) |[y=2]
= \sum[k] S(M,k) (d/dy)^k \sum[f] H[n][f] y^(P^f) |[y=2]
= \sum[k] S(M,k) \sum[f] H[n][f] (P^f)^(fall k) 2^(P^f-k)
= \sum[k] S(M,k) \sum[f] H[n][f] \sum[l] s(k,l) (P^f)^l 2^(P^f-k)
= \sum[l] (\sum[k] S(M,k) s(k,l) 2^-k) \sum[f] H[n][f] (P^f)^l 2^(P^f)
z^f |-> (P^f)^l (z <- P^l z)
z^f |-> 2^(P^f) == 2^(P^f mod A)
\prod[0<=n<N] (p^(le) z^e - p^n p^(l(e-1)) z^(e-1))
= (-1)^N p^(binom(N,2) Nl(e-1)) \prod[0<=n<N] (1 - p^(l-n) z)
*/
// \prod (1 - c z) mod (z^A - z)
namespace que {
int lens[2];
Mint css[2][101'010];
Mint dss[2][101'010][A];
void init() {
for (int i = 0; i < 2; ++i) {
lens[i] = 0;
fill(dss[i][0], dss[i][0] + A, 0);
dss[i][0][0] = 1;
}
}
void push(int i, Mint c) {
css[i][++lens[i]] = c;
Mint *crt = dss[i][lens[i] - 1];
Mint *nxt = dss[i][lens[i]];
for (int f = 0; f < A; ++f) nxt[f] = crt[f];
for (int f = 0; f < A - 1; ++f) nxt[f + 1] -= crt[f] * c;
nxt[1] -= crt[A - 1] * c;
}
void push(Mint c) {
push(1, c);
}
void pop() {
if (!lens[0]) {
for (int j = lens[1]; j > 0; --j) push(0, css[1][j]);
lens[1] = 0;
}
assert(lens[0]);
--lens[0];
}
Mint prod[2 * A - 1];
void get() {
fill(prod, prod + (2 * A - 1), 0);
for (int f0 = 0; f0 < A; ++f0) for (int f1 = 0; f1 < A; ++f1) {
prod[f0 + f1] += dss[0][lens[0]][f0] * dss[1][lens[1]][f1];
}
for (int f = 1; f < A; ++f) {
prod[f] += prod[A - 1 + f];
}
}
} // que
int N, K, M;
int T;
Mint s[1010][1010];
Mint S[1010][1010];
int I;
vector<int> P, E;
Mint hss[1010][A];
int main() {
for (; ~scanf("%d%d%d", &N, &K, &M); ) {
scanf("%d", &T);
assert(T == 1);
for (int m = 0; m <= M; ++m) {
s[m][0] = 0;
s[m][m] = 1;
for (int k = 1; k < m; ++k) {
s[m][k] = s[m - 1][k - 1] - (m - 1) * s[m - 1][k];
}
}
for (int m = 0; m <= M; ++m) {
S[m][0] = 0;
S[m][m] = 1;
for (int k = 1; k < m; ++k) {
S[m][k] = S[m - 1][k - 1] + k * S[m - 1][k];
}
}
P.clear();
E.clear();
{
int k = K;
for (int p = 2; p * p <= k; ++p) if (k % p == 0) {
int e = 0;
do {
++e;
k /= p;
} while (k % p == 0);
P.push_back(p);
E.push_back(e);
}
if (k > 1) {
P.push_back(k);
E.push_back(1);
}
}
I = P.size();
cerr<<"N = "<<N<<", K = "<<K<<", M = "<<M<<", I = "<<I<<", P = "<<P<<", E = "<<E<<endl;
memset(hss, 0, sizeof(hss));
for (int l = 0; l <= M; ++l) {
hss[l][0] = 1;
}
for (int i = 0; i < I; ++i) {
que::init();
Mint pl = Mint(P[i]).pow(-N);
for (int n = N; --n >= 1; ) {
pl *= P[i];
que::push(pl);
}
for (int l = 0; l <= M; ++l) {
// (l-N, l]
pl *= P[i];
que::push(pl);
que::get();
{
const Mint coef = ((N&1)?-1:+1) * Mint(P[i]).pow(1LL*N*(N-1)/2 + 1LL*N*l*(E[i]-1));
Mint tmp[A] = {};
int pf = 1;
for (int f = 0; f < A; ++f) {
const Mint t = coef * que::prod[f];
for (int a = 0; a < A; ++a) {
tmp[(a + pf) % A] += hss[l][a] * t;
}
(pf *= P[i]) %= A;
}
copy(tmp, tmp + A, hss[l]);
}
que::pop();
}
}
Mint ans = 0;
for (int l = 0; l <= M; ++l) {
// (\sum[k] S(M,k) s(k,l) 2^-k)
Mint coef = 0;
{
Mint two = Mint(2).pow(-M);
for (int k = M; k >= l; --k) {
coef += S[M][k] * s[k][l] * two;
two *= 2;
}
}
Mint sum = 0;
for (int a = 0; a < A; ++a) {
sum += hss[l][a] * Mint(1LL << a);
}
ans += coef * sum;
}
printf("%u\n", ans.x);
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Subtask #1:
score: 0
Wrong Answer
Test #1:
score: 10
Accepted
time: 3ms
memory: 15376kb
input:
2 3 665 1
output:
51745605
result:
ok "51745605"
Test #2:
score: -10
Wrong Answer
time: 10ms
memory: 14308kb
input:
2 4 641 1
output:
27766806
result:
wrong answer 1st words differ - expected: '54153482', found: '27766806'
Subtask #2:
score: 15
Accepted
Test #14:
score: 15
Accepted
time: 2ms
memory: 13940kb
input:
19 90203 0 1
output:
142145213
result:
ok "142145213"
Test #15:
score: 0
Accepted
time: 2ms
memory: 12040kb
input:
18 9697 0 1
output:
153592927
result:
ok "153592927"
Test #16:
score: 0
Accepted
time: 2ms
memory: 9956kb
input:
20 41 0 1
output:
112957727
result:
ok "112957727"
Test #17:
score: 0
Accepted
time: 0ms
memory: 10128kb
input:
20 99991 0 1
output:
151341559
result:
ok "151341559"
Subtask #3:
score: 5
Accepted
Dependency #2:
100%
Accepted
Test #18:
score: 5
Accepted
time: 2ms
memory: 9960kb
input:
999 9749 0 1
output:
77370298
result:
ok "77370298"
Test #19:
score: 0
Accepted
time: 0ms
memory: 9948kb
input:
997 55103 0 1
output:
92054017
result:
ok "92054017"
Test #20:
score: 0
Accepted
time: 2ms
memory: 10136kb
input:
1000 41 0 1
output:
6438830
result:
ok "6438830"
Test #21:
score: 0
Accepted
time: 2ms
memory: 10168kb
input:
1000 99991 0 1
output:
31676606
result:
ok "31676606"
Subtask #4:
score: 5
Accepted
Dependency #3:
100%
Accepted
Test #22:
score: 5
Accepted
time: 11ms
memory: 40240kb
input:
99996 20089 0 1
output:
163612442
result:
ok "163612442"
Test #23:
score: 0
Accepted
time: 18ms
memory: 39064kb
input:
99996 17707 0 1
output:
109099283
result:
ok "109099283"
Test #24:
score: 0
Accepted
time: 18ms
memory: 40308kb
input:
100000 41 0 1
output:
131161322
result:
ok "131161322"
Test #25:
score: 0
Accepted
time: 8ms
memory: 39840kb
input:
100000 99991 0 1
output:
84487741
result:
ok "84487741"
Subtask #5:
score: 0
Wrong Answer
Test #26:
score: 0
Wrong Answer
time: 3ms
memory: 14036kb
input:
998 24 0 1
output:
109747680
result:
wrong answer 1st words differ - expected: '75129854', found: '109747680'
Subtask #6:
score: 0
Skipped
Dependency #4:
100%
Accepted
Dependency #5:
0%
Subtask #7:
score: 0
Skipped
Dependency #6:
0%
Subtask #8:
score: 0
Skipped
Dependency #1:
0%
Subtask #9:
score: 0
Runtime Error
Test #46:
score: 0
Runtime Error
input:
99997 3 997 2 0 1 2 1 2 0 2 0 1 0 0 0 0 1 2 0 2 1