QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#186095#4886. Best Sunnhuang685WA 277ms3828kbC++2018.0kb2023-09-23 06:20:512023-09-23 06:20:51

Judging History

你现在查看的是最新测评结果

  • [2023-09-23 06:20:51]
  • 评测
  • 测评结果:WA
  • 用时:277ms
  • 内存:3828kb
  • [2023-09-23 06:20:51]
  • 提交

answer

/**
 * @file cf104491i-1.cpp
 * @author n685
 * @brief
 * @date 2023-09-21
 *
 *
 */
#include <bits/stdc++.h>

#ifdef LOCAL
std::ifstream cin;
std::ofstream cout;
using std::cerr;
#else
using std::cin;
using std::cout;
#define cerr                                                                   \
  if (false)                                                                   \
  std::cerr
#endif

#ifdef LOCAL
#include "dd/debug.h"
#define dbg(...) lineInfo(__LINE__, #__VA_ARGS__), dbg1(__VA_ARGS__)
#define dbgR(...) lineInfo(__LINE__, #__VA_ARGS__), dbg2(__VA_ARGS__)
#define dbgP(p, ...)                                                           \
  lineInfo(__LINE__, #__VA_ARGS__ " proj"), dbg3(p, __VA_ARGS__)
#define dbgRP(p, ...)                                                          \
  lineInfo(__LINE__, #__VA_ARGS__ " proj"), dbg4(p, __VA_ARGS__)
void nline() { cerr << '\n'; }
#else
#define dbg(...) 42
#define dbgR(...) 4242
#define dbgP(...) 420
#define dbgRP(...) 420420
void nline() {}
#endif

using db = long double; // change it to double as needed
const db PI = std::acos(static_cast<db>(-1.0));
constexpr db EPS = 1e-9;
template <class T, class U> constexpr bool eq(const T &a, const U &b) {
  if constexpr (std::is_floating_point<
                    typename std::common_type<T, U>::type>::value) {
    return (std::abs((a - b) / std::max((db)1, (db)b)) < EPS);
  } else {
    return (a == b);
  }
}

#define SIMPLE
template <class T> int sign(T v) { return (v > 0) - (v < 0); }
namespace G {
// based on https://codeforces.com/blog/entry/48122
namespace {
template <class T> struct Point {
  T x, y;
  Point() : x(0), y(0) {}
  Point(T _x, T _y) : x(_x), y(_y) {}

  // arithmetic
  template <class U> Point &operator+=(const Point<U> &b) {
    x += static_cast<T>(b.x), y += static_cast<T>(b.y);
    return (*this);
  }
  template <class U> Point &operator-=(const Point<U> &b) {
    x -= static_cast<T>(b.x), y -= static_cast<T>(b.y);
    return (*this);
  }
  template <class U> Point &operator*=(const U &b) {
    x *= static_cast<T>(b), y *= static_cast<T>(b);
    return (*this);
  }
  template <class U> Point &operator/=(const U &b) {
    x /= static_cast<T>(b), y /= static_cast<T>(b);
    return (*this);
  }

  // other
  template <class U> operator Point<U>() const {
    return Point<U>(static_cast<U>(x), static_cast<U>(y));
  }
  friend std::istream &operator>>(std::istream &in, Point &p) {
    in >> p.x >> p.y;
    return in;
  }
  friend std::ostream &operator<<(std::ostream &out, const Point &p) {
#ifdef SIMPLE
    out << p.x << ' ' << p.y;
#else
    out << '(' << p.x << ", " << p.y << ')';
#endif
    return out;
  }
};

template <class T1, class T2> auto makePoint(const T1 &x, const T2 &y) {
  using R = typename std::common_type<T1, T2>::type;
  return Point<R>(static_cast<R>(x), static_cast<R>(y));
}

// basic operations
template <class T1, class T2> auto operator*(const Point<T1> &a, const T2 &b) {
  return makePoint(a.x * b, a.y * b);
}
template <class T1, class T2> auto operator*(const T1 &b, const Point<T2> &a) {
  return makePoint(a.x * b, a.y * b);
}
template <class T1, class T2> auto operator/(const Point<T1> &a, const T2 &b) {
  return makePoint(a.x / b, a.y / b);
}

template <class T> auto operator-(const Point<T> &a) {
  // return makePoint(-a.x, -a.y);
  return Point<T>(-a.x, -a.y);
}

template <class T1, class T2>
auto operator+(const Point<T1> &a, const Point<T2> &b) {
  return makePoint(a.x + b.x, a.y + b.y);
}
template <class T1, class T2>
auto operator-(const Point<T1> &a, const Point<T2> &b) {
  return makePoint(a.x - b.x, a.y - b.y);
}

template <class T1, class T2>
auto operator*(const Point<T1> &a, const Point<T2> &b) {
  return a.x * b.x + a.y * b.y;
}
template <class T1, class T2>
auto operator^(const Point<T1> &a, const Point<T2> &b) {
  return a.x * b.y - a.y * b.x;
}

// comparison - y takes priority
template <class T1, class T2>
bool operator==(const Point<T1> &a, const Point<T2> &b) {
  return (eq(a.x, b.x) && eq(a.y, b.y));
}
template <class T1, class T2>
bool operator!=(const Point<T1> &a, const Point<T2> &b) {
  return !(a == b);
}
template <class T1, class T2>
bool operator<(const Point<T1> &a, const Point<T2> &b) {
  return eq(a.y, b.y) ? (a.x < b.x) : (a.y < b.y);
}
template <class T1, class T2>
bool operator>(const Point<T1> &a, const Point<T2> &b) {
  return eq(a.y, b.y) ? (a.x > b.x) : (a.y > b.y);
}
template <class T1, class T2>
bool operator<=(const Point<T1> &a, const Point<T2> &b) {
  return eq(a.y, b.y) ? (a.x <= b.x) : (a.y <= b.y);
}
template <class T1, class T2>
bool operator>=(const Point<T1> &a, const Point<T2> &b) {
  return eq(a.y, b.y) ? (a.x >= b.x) : (a.y >= b.y);
}

// comparison - x takes priority
/* template <class T1, class T2>
bool operator==(const Point<T1> &a, const Point<T2> &b) {
  return (eq(a.x, b.x) && eq(a.y, b.y));
}
template <class T1, class T2>
bool operator!=(const Point<T1> &a, const Point<T2> &b) {
  return !(a == b);
}
template <class T1, class T2>
bool operator<(const Point<T1> &a, const Point<T2> &b) {
  return eq(a.x, b.x) ? (a.y < b.y) : (a.x < b.x);
}
template <class T1, class T2>
bool operator>(const Point<T1> &a, const Point<T2> &b) {
  return eq(a.x, b.x) ? (a.y > b.y) : (a.x > b.x);
}
template <class T1, class T2>
bool operator<=(const Point<T1> &a, const Point<T2> &b) {
  return eq(a.x, b.x) ? (a.y <= b.y) : (a.x <= b.x);
}
template <class T1, class T2>
bool operator>=(const Point<T1> &a, const Point<T2> &b) {
  return eq(a.x, b.x) ? (a.y >= b.y) : (a.x >= b.x);
} */

// angles
/**
 * @brief determines if a comes before b in the counter-clockwise ordering
 *
 * @param a lhs
 * @param b rhs
 * @return -1 if a comes before b, 0 if a == b, and 1 if a comes after b
 */
template <class T1, class T2> int ccw(const Point<T1> &a, const Point<T2> &b) {
  return sign(b ^ a);
}
template <class T1, class T2, class T3>
int ccw(const Point<T1> &a, const Point<T2> &b, const Point<T3> &o) {
  return ccw(a - o, b - o);
}
template <class T> struct AngleCompare {
  const Point<T> o;
  AngleCompare(const Point<T> &origin = Point<T>()) : o(origin) {}
  bool operator()(const Point<T> &a, const Point<T> &b) {
    int v = ccw(a, b, o);
    if (v == 0) {
      return dist2(a, o) < dist2(b, o);
    } else {
      return v < 0;
    }
  }
};

template <class T1> auto angle(const Point<T1> &a) {
  db d = std::atan2(static_cast<db>(a.y), static_cast<db>(a.x));
  if (d < 0) {
    d += 2 * PI;
  }
  return d;
}
template <class T1, class T2>
auto angle(const Point<T1> &a, const Point<T2> &b) {
  return std::atan2(static_cast<db>(a ^ b), static_cast<db>(a * b));
}
template <class T1, class T2, class T3>
auto angle(const Point<T1> &a, const Point<T2> &b, const Point<T3> &o) {
  return angle(a - o, b - o);
}

template <class T> auto rotate(const Point<T> &a, db sa, db ca) {
  return makePoint(ca * a.x - sa * a.y, sa * a.x + ca * a.y);
}
template <class T> auto rotate(const Point<T> &a, db angle) {
  return rotate(a, std::sin(angle), std::cos(angle));
}
template <class T1, class T2>
auto rotate(const Point<T1> &a, const Point<T2> &o, db angle) {
  return rotate(a - o, angle) + o;
}
template <class T> auto perp(const Point<T> &a) { return makePoint(-a.y, a.x); }
template <class T1, class T2>
auto perp(const Point<T1> &a, const Point<T2> &o) {
  return perp(a - o) + o;
}

// distances
template <class T> auto norm2(const Point<T> &a) { return a * a; }
template <class T> db norm(const Point<T> &a) {
  return std::sqrt(static_cast<db>(norm2(a)));
}
template <class T> auto abs(const Point<T> &a) {
  return std::sqrt(static_cast<db>(norm2(a)));
}

template <class T1, class T2>
auto dist2(const Point<T1> &a, const Point<T2> &b) {
  return norm2(a - b);
}
template <class T1, class T2> db dist(const Point<T1> &a, const Point<T2> &b) {
  return norm(a - b);
}
template <class T1, class T2>
Point<db> bisector(const Point<T1> &a, const Point<T2> &b) {
  return a * norm(b) + b * norm(a);
  // return a / norm(a) + b / norm(b);
}
template <class T1, class T2, class T3>
Point<db> bisector(const Point<T1> &a, const Point<T2> &b, const Point<T3> &o) {
  return bisector(a - o, b - o) + o;
}
} // namespace

namespace {
template <class T> struct Line {
  Point<T> a, ab;
  Line() : a(), ab() {}
  template <class T1, class T2>
  Line(const Point<T1> &_a, const Point<T2> &_b, bool two_points = true) {
    a = _a;
    if (two_points) {
      ab = _b - _a;
    } else {
      ab = _b;
    }
  }

  Point<T> b() const { return (a + ab); }

  friend std::ostream &operator<<(std::ostream &out, Line l) {
#ifdef SIMPLE
    out << l.a << ' ' << l.b();
#else
    out << l.a << " -> " << l.b();
#endif
    return out;
  }

  // commenting this line out because it allowed for operations on bool like xor
  // operator bool() const { return (ab != Point<T>()); }
  bool line() const { return (ab != Point<T>()); }
  Line operator-() const { return Line(b(), a); }
};
// a -> b or a -> (a + b)
template <class T1, class T2>
auto makeLine(const Point<T1> &a, const Point<T2> &b, bool two_points = true) {
  using R = typename std::common_type<T1, T2>::type;
  return Line<R>(static_cast<Point<R>>(a), static_cast<Point<R>>(b),
                 two_points);
}
// (x1, y1) -> (x2, y2)
template <class T1, class T2, class T3, class T4>
auto makeLine(const T1 &x1, const T2 &y1, const T3 &x2, const T4 &y2) {
  return makeLine(makePoint(x1, y1), makePoint(x2, y2));
}
// Ax + By + C = 0
template <class T1, class T2, class T3>
auto makeLine(const T1 &A, const T2 &B, const T3 &C) {
  assert(A != 0 || B != 0);
  if (B == 0) {
    return makeLine(makePoint(-static_cast<db>(C) / A, 0), makePoint(B, -A),
                    false);
  } else {
    return makeLine(makePoint(0, -static_cast<db>(C) / B), makePoint(B, -A),
                    false);
  }
}
template <class T> std::array<T, 3> standard(const Line<T> &l) {
  /*   if (l.ab.y < 0)
    return {-l.ab.y, l.ab.x, -l.ab.x * l.a.y + l.ab.y * l.a.x};
    else */
  return {l.ab.y, -l.ab.x, l.ab.x * l.a.y - l.ab.y * l.a.x};
}

template <class T> auto len2(const Line<T> &l) { return norm2(l.ab); }
template <class T> auto len(const Line<T> &l) { return norm(l.ab); }

/**
 * @brief specifies the type of line; can take the three forms line, ray, and
 * seg
 *
 */
enum LineType { line, ray, seg };

template <LineType t, class T1, class T2>
bool on(const Point<T1> &p, const Line<T2> &l) {
  if (!l.line()) {
    return (p == l.a);
  } else if (t >= 1 && ((p - l.a) * l.ab) <= 0) {
    return (p == l.a);
  } else if (t == 2 && ((p - l.b()) * l.ab) >= 0) {
    return (p == l.b());
  } else {
    return eq((p - l.a) ^ l.ab, 0);
  }
}

template <LineType t, class T1, class T2>
auto dist(const Point<T1> &p, const Line<T2> &l) {
  if (!l.line()) {
    return dist(p, l.a);
  } else if (t >= 1 && ((p - l.a) * l.ab) <= 0) {
    return dist(p, l.a);
  } else if (t == 2 && ((p - l.b()) * l.ab) >= 0) {
    return dist(p, l.b());
  } else {
    return std::abs((p - l.a) ^ l.ab) / norm(l.ab);
  }
}

template <LineType t = line, class T1, class T2>
Point<db> closest(const Point<T1> &p, const Line<T2> &l) {
  if (!l.line()) {
    return l.a;
  } else if (t >= 1 && ((p - l.a) * l.ab) <= 0) {
    return l.a;
  } else if (t == 2 && ((p - l.b()) * l.ab) >= 0) {
    return l.b();
  } else {
    return l.a + l.ab * static_cast<db>((p - l.a) * l.ab) / norm2(l.ab);
  }
}
template <LineType t = line, class T1, class T2>
Point<db> reflect(const Point<T1> &p, const Line<T2> &l) {
  auto proj = closest<t>(p, l);
  return 2 * proj - p;
}

/**
 * @brief Determines and computes the intersection of two lines
 *
 * @tparam T1 type of first line
 * @tparam T2 type of second line
 * @tparam t1 line type of first line
 * @tparam t2 line type of second line
 * @param l1 first line
 * @param l2 second line
 * @return Whether the two lines interesct, as well as the point of
 * intersection if and only if the lines intersect and are not parallel
 */
template <LineType t1, LineType t2, class T1, class T2>
std::pair<bool, Point<db>> intersect(const Line<T1> &l1, const Line<T2> &l2) {
  if (!l1.line()) {
    return {on<t2>(l1.a, l2), l1.a};
  } else if (!l2.line()) {
    return {on<t1>(l2.a, l1), l2.a};
  }
  if (eq(l1.ab ^ l2.ab, 0)) {
    if (!eq(l1.ab ^ (l2.a - l1.a), 0)) {
      return {false, Point<db>()};
    }

    if (t1 == line || t2 == line) {
      return {true, Point<db>()};
    }
    if (t1 == seg) {
      if (on<t2>(l1.a, l2) || on<t2>(l1.b(), l2)) {
        return {true, Point<db>()};
      }
    }
    if (t2 == seg) {
      if (on<t1>(l2.a, l1) || on<t1>(l2.b(), l1)) {
        return {true, Point<db>()};
      }
    }
    if (t1 == ray && t2 == ray) {
      if ((l1.ab * l2.ab) > 0 || on<t2>(l1.a, l2) || on<t1>(l2.a, l1)) {
        return {true, Point<db>()};
      }
    }

    return {false, Point<db>()};
  }

  // ((l1.a + i * l1.ab - l2.a) ^ l2.ab) == 0
  auto i = (l2.a - l1.a) ^ l2.ab;
  auto j = (l1.a - l2.a) ^ l1.ab;
  auto d = l1.ab ^ l2.ab;
  if (d < 0 && ((t1 == 2 && i < d) || (t1 >= 1 && i > 0) ||
                (t2 == 2 && j > -d) || (t2 >= 1 && j < 0))) {
    return {false, Point<db>()};
  } else if (d > 0 && ((t1 == 2 && i > d) || (t1 >= 1 && i < 0) ||
                       (t2 == 2 && j < -d) || (t2 >= 1 && j > 0))) {
    return {false, Point<db>()};
  } else {
    return {true, l1.a + static_cast<db>(i) / d * l1.ab};
  }
}
template <LineType t1, LineType t2, class T1, class T2>
db dist(const Line<T1> &l1, const Line<T2> &l2) {
  if (!l1.line()) {
    return dist<t2>(l1.a, l2);
  } else if (!l2.line()) {
    return dist<t1>(l2.a, l1);
  }
  if (intersect<t1, t2>(l1, l2).first) {
    return 0;
  }
  return std::min({dist<t2>(l1.a, l2), dist<t2>(l1.b(), l2), dist<t1>(l2.a, l1),
                   dist<t1>(l2.b(), l1)});
}
} // namespace
} // namespace G
using namespace G;

struct Event {
  int type;
  int i, j;
};

std::mt19937 rng(std::chrono::steady_clock::now().time_since_epoch().count());
constexpr db EPS2 = 1e-6;

db area(G::Point<int64_t> a, G::Point<int64_t> b, G::Point<int64_t> c) {
  return std::abs((db)((a ^ b) + (b ^ c) + (c ^ a)) / 2);
}

void solve() {
  int n;
  cin >> n;
  std::vector<G::Point<int64_t>> p(n);
  for (int i = 0; i < n; ++i) {
    cin >> p[i];
  }
#ifndef LOCAL
  std::shuffle(p.begin(), p.end(), rng);
#endif

  std::vector<Event> v;
  for (int i = 0; i < n; ++i) {
    for (int j = i + 1; j < n; ++j) {
      v.push_back(Event{0, i, j});
      v.push_back(Event{0, j, i});
      v.push_back(Event{1, i, j});
      v.push_back(Event{1, j, i});
    }
  }
  std::ranges::sort(v, {}, [&](auto a) {
    db d = G::angle(p[a.i] - p[a.j]) + ((a.type) ? PI / 2 : (db)0);
    if (d >= 2 * PI) {
      d -= 2 * PI;
    }
    return std::pair{d, a.type};
  });
  std::vector<std::vector<db>> off(n, std::vector<db>(n));
  for (int i = 0; i < n; ++i) {
    for (int j = 0; j < n; ++j) {
      if (i == j) {
        continue;
      }
      G::Line<int64_t> l = G::makeLine(p[i], p[j]);
      for (int k = 0; k < n; ++k) {
        if (k == i || k == j) {
          continue;
        }
        if (G::ccw(p[k], p[j], p[i]) == -1 &&
            G::on<G::seg>(G::closest<G::line>(p[k], l), l)) {
          off[i][j] += std::min(G::dist(p[k], p[i]), G::dist(p[k], p[j]));
        }
      }
    }
  }

  db ans = 0;
  for (int s = 0; s < n; ++s) {
    std::vector<std::vector<bool>> g(n, std::vector<bool>(n));
    auto good = [&](db x) {
      std::vector<db> dp(n, -4e18), sub(n);
      dp[s] = 0;
      db lans = 0;
      for (auto [type, i, j] : v) {
        if (type == 0) {
          if (!g[i][j] && i != s && j != s) {
            continue;
          }
          if (i == s) {
            lans = std::max(lans, dp[j] + area(p[s], p[i], p[j]) -
                                      x * (G::dist(p[i], p[j]) + off[j][i]));
          }
          dp[i] = std::max(dp[i], dp[j] + area(p[s], p[i], p[j]) -
                                      x * (G::dist(p[i], p[j]) + off[j][i]));
        } else {
          // dp[j] -= x * (sub[j] += G::dist(p[i], p[j]));
          // if (j != s) {
          dp[j] -= x * G::dist(p[i], p[j]);
          // }
          sub[j] += G::dist(p[i], p[j]);
          if (j == s) {
            lans -= x * G::dist(p[i], p[j]);
          }
        }
      }
      return (dp[s] >= 0);
    };
    std::vector<int> lp;
    for (int i = 0; i < n; ++i) {
      if (s != i && p[s].y <= p[i].y) {
        lp.push_back(i);
      }
    }
    std::ranges::sort(lp, G::AngleCompare<int64_t>(p[s]),
                      [&](auto a) { return p[a]; });
    int m = (int)lp.size();

    for (int ii = 0; ii < m; ++ii) {
      int i = lp[ii];
      if (s == i || p[s].y > p[i].y) {
        continue;
      }
      G::Point<int64_t> mi = G::makePoint<int64_t>(1, 0);
      G::Point<int64_t> c2 = G::makePoint<int64_t>(-1, 0);
      for (int jj = ii + 1; jj < m; ++jj) {
        int j = lp[jj];
        if (s == j || p[s].y > p[j].y) {
          continue;
        }
        G::Point<int64_t> d = p[j] - p[i];
        if (G::angle(mi) <= PI && G::angle(d) >= PI) {
          mi = c2;
        }
        if (G::ccw(mi, d) <= 0) {
          g[i][j] = true;
          g[j][i] = true;
          mi = d;
        }
      }
    }
    if (good(ans)) {
      db l = ans, r = 4e18;
      while (std::abs(r - l) / std::max((db)1, l) >= EPS2) {
        db mid = (l + r) / 2;
        if (good(mid)) {
          l = mid;
        } else {
          r = mid;
        }
      }
      ans = l;
    }
  }
  cout << std::fixed << std::setprecision(10) << ans << '\n';
}

int main() {
#ifdef LOCAL
  cin.open("input.txt");
  cout.rdbuf()->pubsetbuf(0, 0);
  cout.open("output.txt");
#else
  cin.tie(nullptr)->sync_with_stdio(false);
#endif

  int t;
  cin >> t;
  while (t--) {
    solve();
  }
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3828kb

input:

4
3
-1 -1
1 -1
0 1
4
0 0
10 0
0 10
8 1
5
2 0
-2 0
1 1
-1 1
0 3
8
4 4
-4 4
4 -4
-4 -4
5 6
-6 5
-5 -6
6 -5

output:

0.3090164789
1.2368608361
0.2711373971
1.5631000425

result:

ok 4 numbers

Test #2:

score: 0
Accepted
time: 260ms
memory: 3720kb

input:

10000
3
702262 828158
-350821 -420883
-466450 13507
3
28647 -193498
126436 -864937
-287798 738936
3
270358 -269567
745815 -485408
834083 677952
3
-2036 -403634
742978 -263774
975937 -609237
3
584248 -472620
482016 -356760
284902 903881
3
-292004 504925
-935756 373793
-781101 -434659
3
-858513 684433...

output:

85789.0689910656
18268.5084507833
102489.9566257065
66685.7519725228
18674.6505845964
106468.9243886197
14427.0175233413
29966.2367402725
143547.7171157773
13097.1690198885
162410.1244115939
72070.9299531497
29369.9797555141
52867.2700235433
90314.2578084770
99775.8733273235
144449.6649030680
64406....

result:

ok 10000 numbers

Test #3:

score: 0
Accepted
time: 277ms
memory: 3824kb

input:

10000
3
2 2
2 -2
-5 -5
3
-3 5
5 -4
2 -2
3
-4 1
2 -2
-4 4
3
1 -4
2 1
-4 1
3
2 1
-1 1
-3 3
3
4 5
3 -1
-3 -3
3
1 5
5 0
5 -1
3
2 -3
-5 -3
5 3
3
-4 4
0 -5
5 4
3
2 -3
5 0
2 -5
3
-2 -3
5 -3
5 4
3
-1 4
4 4
4 3
3
5 3
-1 4
2 -1
3
2 -3
4 3
-4 3
3
0 4
-2 -2
-1 -3
3
-2 0
-4 -2
4 2
3
-3 -1
3 1
1 -3
3
2 -5
2 3
-4 ...

output:

0.6506999745
0.2268087881
0.4946821304
0.8255320416
0.2675317168
0.7379278245
0.1368528964
0.8277455769
1.3896278603
0.2484759570
1.0251257603
0.2252445895
0.7981680797
1.0521770479
0.2700901864
0.2210276228
0.6549285218
1.0657924408
0.1207361094
0.1727211022
0.4458817830
0.2484759570
0.1224980041
0...

result:

ok 10000 numbers

Test #4:

score: -100
Wrong Answer
time: 270ms
memory: 3792kb

input:

5625
4
-405394 -381883
602267 -335687
-620806 984110
271283 531233
4
196903 -993060
290851 358123
-890076 -717709
-681138 209884
4
-849589 607722
-21517 -586295
208561 -220953
924518 622983
4
-832186 456270
289934 43656
636006 339718
188963 113907
4
-305762 -872205
-520125 368722
-774548 984204
4245...

output:

232624.8460353366
268175.6726408135
159589.2471992211
60440.7203539518
133893.1136102284
63201.9664468379
167697.5615663712
129470.0024273556
126903.7772002455
106643.9688293674
131692.2103051364
100421.0278300605
148490.2695594870
68842.2300935965
241376.1465008800
303904.4710329009
77462.287886159...

result:

wrong answer 33rd numbers differ - expected: '42413.7138534', found: '46632.0910922', error = '0.0994579'