QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#185054#5612. Picking Up Steamucup-team004WA 0ms3908kbC++2013.0kb2023-09-21 16:28:582023-09-21 16:28:58

Judging History

你现在查看的是最新测评结果

  • [2023-09-21 16:28:58]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:3908kb
  • [2023-09-21 16:28:58]
  • 提交

answer

#include <bits/stdc++.h>

using i64 = long long;

template<class T>
struct Point {
    T x;
    T y;
    Point(const T &x_ = 0, const T &y_ = 0) : x(x_), y(y_) {}
    
    template<class U>
    operator Point<U>() {
        return Point<U>(U(x), U(y));
    }
    Point &operator+=(const Point &p) & {
        x += p.x;
        y += p.y;
        return *this;
    }
    Point &operator-=(const Point &p) & {
        x -= p.x;
        y -= p.y;
        return *this;
    }
    Point &operator*=(const T &v) & {
        x *= v;
        y *= v;
        return *this;
    }
    Point &operator/=(const T &v) & {
        x /= v;
        y /= v;
        return *this;
    }
    Point operator-() const {
        return Point(-x, -y);
    }
    friend Point operator+(Point a, const Point &b) {
        return a += b;
    }
    friend Point operator-(Point a, const Point &b) {
        return a -= b;
    }
    friend Point operator*(Point a, const T &b) {
        return a *= b;
    }
    friend Point operator/(Point a, const T &b) {
        return a /= b;
    }
    friend Point operator*(const T &a, Point b) {
        return b *= a;
    }
    friend bool operator==(const Point &a, const Point &b) {
        return a.x == b.x && a.y == b.y;
    }
    friend std::istream &operator>>(std::istream &is, Point &p) {
        return is >> p.x >> p.y;
    }
    friend std::ostream &operator<<(std::ostream &os, const Point &p) {
        return os << "(" << p.x << ", " << p.y << ")";
    }
};

template<class T>
struct Line {
    Point<T> a;
    Point<T> b;
    Line(const Point<T> &a_ = Point<T>(), const Point<T> &b_ = Point<T>()) : a(a_), b(b_) {}
};

template<class T>
T dot(const Point<T> &a, const Point<T> &b) {
    return a.x * b.x + a.y * b.y;
}

template<class T>
T cross(const Point<T> &a, const Point<T> &b) {
    return a.x * b.y - a.y * b.x;
}

template<class T>
T square(const Point<T> &p) {
    return dot(p, p);
}

template<class T>
double length(const Point<T> &p) {
    return std::sqrt(square(p));
}

template<class T>
double length(const Line<T> &l) {
    return length(l.a - l.b);
}

template<class T>
Point<T> normalize(const Point<T> &p) {
    return p / length(p);
}

template<class T>
double distance(const Point<T> &a, const Point<T> &b) {
    return length(a - b);
}

template<class T>
double distancePL(const Point<T> &p, const Line<T> &l) {
    return std::abs(cross(l.a - l.b, l.a - p)) / length(l);
}

template<class T>
double distancePS(const Point<T> &p, const Line<T> &l) {
    if (dot(p - l.a, l.b - l.a) < 0) {
        return distance(p, l.a);
    }
    if (dot(p - l.b, l.a - l.b) < 0) {
        return distance(p, l.b);
    }
    return distancePL(p, l);
}

template<class T>
Point<T> rotate(const Point<T> &a) {
    return Point(-a.y, a.x);
}

template<class T>
int sgn(const Point<T> &a) {
    return a.y > 0 || (a.y == 0 && a.x > 0) ? 1 : -1;
}

template<class T>
bool pointOnLineLeft(const Point<T> &p, const Line<T> &l) {
    return cross(l.b - l.a, p - l.a) > 0;
}

template<class T>
Point<T> lineIntersection(const Line<T> &l1, const Line<T> &l2) {
    return l1.a + (l1.b - l1.a) * (cross(l2.b - l2.a, l1.a - l2.a) / cross(l2.b - l2.a, l1.a - l1.b));
}

template<class T>
bool pointOnSegment(const Point<T> &p, const Line<T> &l) {
    return cross(p - l.a, l.b - l.a) == 0 && std::min(l.a.x, l.b.x) <= p.x && p.x <= std::max(l.a.x, l.b.x)
        && std::min(l.a.y, l.b.y) <= p.y && p.y <= std::max(l.a.y, l.b.y);
}

template<class T>
bool pointInPolygon(const Point<T> &a, const std::vector<Point<T>> &p) {
    int n = p.size();
    for (int i = 0; i < n; i++) {
        if (pointOnSegment(a, Line(p[i], p[(i + 1) % n]))) {
            return true;
        }
    }
    
    int t = 0;
    for (int i = 0; i < n; i++) {
        auto u = p[i];
        auto v = p[(i + 1) % n];
        if (u.x < a.x && v.x >= a.x && pointOnLineLeft(a, Line(v, u))) {
            t ^= 1;
        }
        if (u.x >= a.x && v.x < a.x && pointOnLineLeft(a, Line(u, v))) {
            t ^= 1;
        }
    }
    
    return t == 1;
}

// 0 : not intersect
// 1 : strictly intersect
// 2 : overlap
// 3 : intersect at endpoint
template<class T>
std::tuple<int, Point<T>, Point<T>> segmentIntersection(const Line<T> &l1, const Line<T> &l2) {
    if (std::max(l1.a.x, l1.b.x) < std::min(l2.a.x, l2.b.x)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (std::min(l1.a.x, l1.b.x) > std::max(l2.a.x, l2.b.x)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (std::max(l1.a.y, l1.b.y) < std::min(l2.a.y, l2.b.y)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (std::min(l1.a.y, l1.b.y) > std::max(l2.a.y, l2.b.y)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (cross(l1.b - l1.a, l2.b - l2.a) == 0) {
        if (cross(l1.b - l1.a, l2.a - l1.a) != 0) {
            return {0, Point<T>(), Point<T>()};
        } else {
            auto maxx1 = std::max(l1.a.x, l1.b.x);
            auto minx1 = std::min(l1.a.x, l1.b.x);
            auto maxy1 = std::max(l1.a.y, l1.b.y);
            auto miny1 = std::min(l1.a.y, l1.b.y);
            auto maxx2 = std::max(l2.a.x, l2.b.x);
            auto minx2 = std::min(l2.a.x, l2.b.x);
            auto maxy2 = std::max(l2.a.y, l2.b.y);
            auto miny2 = std::min(l2.a.y, l2.b.y);
            Point<T> p1(std::max(minx1, minx2), std::max(miny1, miny2));
            Point<T> p2(std::min(maxx1, maxx2), std::min(maxy1, maxy2));
            if (!pointOnSegment(p1, l1)) {
                std::swap(p1.y, p2.y);
            }
            if (p1 == p2) {
                return {3, p1, p2};
            } else {
                return {2, p1, p2};
            }
        }
    }
    auto cp1 = cross(l2.a - l1.a, l2.b - l1.a);
    auto cp2 = cross(l2.a - l1.b, l2.b - l1.b);
    auto cp3 = cross(l1.a - l2.a, l1.b - l2.a);
    auto cp4 = cross(l1.a - l2.b, l1.b - l2.b);
    
    if ((cp1 > 0 && cp2 > 0) || (cp1 < 0 && cp2 < 0) || (cp3 > 0 && cp4 > 0) || (cp3 < 0 && cp4 < 0)) {
        return {0, Point<T>(), Point<T>()};
    }
    
    Point p = lineIntersection(l1, l2);
    if (cp1 != 0 && cp2 != 0 && cp3 != 0 && cp4 != 0) {
        return {1, p, p};
    } else {
        return {3, p, p};
    }
}

template<class T>
double distanceSS(const Line<T> &l1, const Line<T> &l2) {
    if (std::get<0>(segmentIntersection(l1, l2)) != 0) {
        return 0.0;
    }
    return std::min({distancePS(l1.a, l2), distancePS(l1.b, l2), distancePS(l2.a, l1), distancePS(l2.b, l1)});
}

template<class T>
bool segmentInPolygon(const Line<T> &l, const std::vector<Point<T>> &p) {
    int n = p.size();
    if (!pointInPolygon(l.a, p)) {
        return false;
    }
    if (!pointInPolygon(l.b, p)) {
        return false;
    }
    for (int i = 0; i < n; i++) {
        auto u = p[i];
        auto v = p[(i + 1) % n];
        auto w = p[(i + 2) % n];
        auto [t, p1, p2] = segmentIntersection(l, Line(u, v));
        
        if (t == 1) {
            return false;
        }
        if (t == 0) {
            continue;
        }
        if (t == 2) {
            if (pointOnSegment(v, l) && v != l.a && v != l.b) {
                if (cross(v - u, w - v) > 0) {
                    return false;
                }
            }
        } else {
            if (p1 != u && p1 != v) {
                if (pointOnLineLeft(l.a, Line(v, u))
                    || pointOnLineLeft(l.b, Line(v, u))) {
                    return false;
                }
            } else if (p1 == v) {
                if (l.a == v) {
                    if (pointOnLineLeft(u, l)) {
                        if (pointOnLineLeft(w, l)
                            && pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    } else {
                        if (pointOnLineLeft(w, l)
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    }
                } else if (l.b == v) {
                    if (pointOnLineLeft(u, Line(l.b, l.a))) {
                        if (pointOnLineLeft(w, Line(l.b, l.a))
                            && pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    } else {
                        if (pointOnLineLeft(w, Line(l.b, l.a))
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    }
                } else {
                    if (pointOnLineLeft(u, l)) {
                        if (pointOnLineLeft(w, Line(l.b, l.a))
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    } else {
                        if (pointOnLineLeft(w, l)
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    }
                }
            }
        }
    }
    return true;
}

template<class T>
std::vector<Point<T>> hp(std::vector<Line<T>> lines) {
    std::sort(lines.begin(), lines.end(), [&](auto l1, auto l2) {
        auto d1 = l1.b - l1.a;
        auto d2 = l2.b - l2.a;
        
        if (sgn(d1) != sgn(d2)) {
            return sgn(d1) == 1;
        }
        
        return cross(d1, d2) > 0;
    });
    
    std::deque<Line<T>> ls;
    std::deque<Point<T>> ps;
    for (auto l : lines) {
        if (ls.empty()) {
            ls.push_back(l);
            continue;
        }
        
        while (!ps.empty() && !pointOnLineLeft(ps.back(), l)) {
            ps.pop_back();
            ls.pop_back();
        }
        
        while (!ps.empty() && !pointOnLineLeft(ps[0], l)) {
            ps.pop_front();
            ls.pop_front();
        }
        
        if (cross(l.b - l.a, ls.back().b - ls.back().a) == 0) {
            if (dot(l.b - l.a, ls.back().b - ls.back().a) > 0) {
                
                if (!pointOnLineLeft(ls.back().a, l)) {
                    assert(ls.size() == 1);
                    ls[0] = l;
                }
                continue;
            }
            return {};
        }
        
        ps.push_back(lineIntersection(ls.back(), l));
        ls.push_back(l);
    }
    
    while (!ps.empty() && !pointOnLineLeft(ps.back(), ls[0])) {
        ps.pop_back();
        ls.pop_back();
    }
    if (ls.size() <= 2) {
        return {};
    }
    ps.push_back(lineIntersection(ls[0], ls.back()));
    
    return std::vector(ps.begin(), ps.end());
}

using real = double;
using P = Point<real>;

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int n;
    std::cin >> n;
    
    std::vector<P> a(n + 1);
    for (int i = 0; i <= n; i++) {
        int x, y;
        std::cin >> x >> y;
        a[i] = P(x, y);
    }
    
    int x0;
    std::cin >> x0;
    
    P s, vec;
    real r, v;
    std::cin >> s.x >> s.y >> r >> vec.x >> vec.y >> v;
    
    int p = 0;
    while (a[p + 1].x < x0) {
        p++;
    }
    P o = a[p] + (a[p + 1] - a[p]) / (a[p + 1].x - a[p].x) * (x0 - a[p].x);
    P ang;
    vec = normalize(vec) * v;
    real ans = -1;
    
    constexpr real inf = 1E9;
    
    auto work = [&](P u, P v) {
        if (s.x >= u.x && s.x <= v.x && pointOnLineLeft(s, Line(u, v))) {
            ans = 0;
            return;
        }
        Line l1(u, P(u.x, inf)), l2(u, v), l3(v, P(v.x, inf));
        real lo = 0, hi = 1E5;
        
        auto check = [&](real t) {
            Line l(s, s + vec * t);
            return distanceSS(l, l1) < r || distanceSS(l, l2) < r || distanceSS(l, l3) < r;
        };
        if (!check(hi)) {
            return;
        }
        for (int t = 0; t < 100; t++) {
            real m = (lo + hi) / 2;
            if (check(m)) {
                hi = m;
            } else {
                lo = m;
            }
        }
        if (ans < 0 || ans > lo) {
            ans = lo;
        }
    };
    if (a[0].x == x0) {
        p--;
    }
    for (int i = p; i >= 0; i--) {
        if (i == p || cross(a[i] - o, ang - o) > 0) {
            ang = a[i];
        }
        P u = o + (ang - o) / (ang.x - o.x) * (a[i].x - o.x);
        P v = o + (ang - o) / (ang.x - o.x) * (a[i + 1].x - o.x);
        work(u, v);
    }
    if (a[p + 1].x == x0) {
        p++;
    }
    for (int i = p; i < n; i++) {
        if (i == p || cross(a[i + 1] - o, ang - o) < 0) {
            ang = a[i + 1];
        }
        P u = o + (ang - o) / (ang.x - o.x) * (a[i].x - o.x);
        P v = o + (ang - o) / (ang.x - o.x) * (a[i + 1].x - o.x);
        work(u, v);
    }
    
    if (ans < 0) {
        std::cout << -1 << "\n";
    } else {
        std::cout << std::fixed << std::setprecision(10) << ans << "\n";
    }
    
    return 0;
}

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 3904kb

input:

7 1 0 2 2 4 2 5 5 6 0 9 4 12 3 14 0
2 13 -1 1 -1 1 1

output:

8.8994949366

result:

ok found '8.89949', expected '8.89900', error '0.00006'

Test #2:

score: 0
Accepted
time: 0ms
memory: 3880kb

input:

3 0 0 3 3 6 3 9 0
3 4 1 1 -1 1 1

output:

1.1213203436

result:

ok found '1.12132', expected '1.12132', error '0.00000'

Test #3:

score: 0
Accepted
time: 0ms
memory: 3772kb

input:

3 0 0 3 3 6 3 9 0
4 4 1 1 -1 1 1

output:

1.4142135624

result:

ok found '1.41421', expected '1.41421', error '0.00000'

Test #4:

score: 0
Accepted
time: 0ms
memory: 3716kb

input:

3 0 0 3 3 6 3 9 0
4 4 1 1 1 1 1

output:

1.4142135624

result:

ok found '1.41421', expected '1.41421', error '0.00000'

Test #5:

score: 0
Accepted
time: 0ms
memory: 3780kb

input:

3 0 0 3 3 6 3 9 0
8 4 1 1 1 1 1

output:

1.8284271247

result:

ok found '1.82843', expected '1.82843', error '0.00000'

Test #6:

score: 0
Accepted
time: 0ms
memory: 3780kb

input:

3 0 0 3 3 6 3 9 0
0 4 1 1 0 1 1

output:

1.5857864376

result:

ok found '1.58579', expected '1.58579', error '0.00000'

Test #7:

score: 0
Accepted
time: 0ms
memory: 3700kb

input:

3 0 0 3 3 6 3 9 0
0 4 1 1 1 1 1

output:

-1

result:

ok found '-1.00000', expected '-1.00000', error '-0.00000'

Test #8:

score: 0
Accepted
time: 0ms
memory: 3784kb

input:

2 10 10 30 40 60 60
50 40 30 10 -1 1 1

output:

3.9440965965

result:

ok found '3.94410', expected '3.94410', error '0.00000'

Test #9:

score: -100
Wrong Answer
time: 0ms
memory: 3908kb

input:

5 0 80 40 0 60 60 100 0 120 40 160 60
0 140 20 20 -1 1 1

output:

8.2842712475

result:

wrong answer 1st numbers differ - expected: '7.20242', found: '8.28427', error = '0.15021'