QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#183977#4903. 细菌hos_lyric#100 ✓917ms16172kbC++1411.7kb2023-09-20 06:22:052024-07-04 02:05:11

Judging History

你现在查看的是最新测评结果

  • [2024-07-04 02:05:11]
  • 评测
  • 测评结果:100
  • 用时:917ms
  • 内存:16172kb
  • [2023-09-20 06:22:05]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353U;
constexpr unsigned MO2 = 2U * MO;
constexpr int FFT_MAX = 23;
using Mint = ModInt<MO>;
constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U};
constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U};
constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U};
constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U};

// as[rev(i)] <- \sum_j \zeta^(ij) as[j]
void fft(Mint *as, int n) {
  assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
  int m = n;
  if (m >>= 1) {
    for (int i = 0; i < m; ++i) {
      const unsigned x = as[i + m].x;  // < MO
      as[i + m].x = as[i].x + MO - x;  // < 2 MO
      as[i].x += x;  // < 2 MO
    }
  }
  if (m >>= 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + m; ++i) {
        const unsigned x = (prod * as[i + m]).x;  // < MO
        as[i + m].x = as[i].x + MO - x;  // < 3 MO
        as[i].x += x;  // < 3 MO
      }
      prod *= FFT_RATIOS[__builtin_ctz(++h)];
    }
  }
  for (; m; ) {
    if (m >>= 1) {
      Mint prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < MO
          as[i + m].x = as[i].x + MO - x;  // < 4 MO
          as[i].x += x;  // < 4 MO
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
    if (m >>= 1) {
      Mint prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < MO
          as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
          as[i + m].x = as[i].x + MO - x;  // < 3 MO
          as[i].x += x;  // < 3 MO
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
  }
  for (int i = 0; i < n; ++i) {
    as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
    as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x;  // < MO
  }
}

// as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]
void invFft(Mint *as, int n) {
  assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
  int m = 1;
  if (m < n >> 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + m; ++i) {
        const unsigned long long y = as[i].x + MO - as[i + m].x;  // < 2 MO
        as[i].x += as[i + m].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
    }
    m <<= 1;
  }
  for (; m < n >> 1; m <<= 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + (m >> 1); ++i) {
        const unsigned long long y = as[i].x + MO2 - as[i + m].x;  // < 4 MO
        as[i].x += as[i + m].x;  // < 4 MO
        as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      for (int i = i0 + (m >> 1); i < i0 + m; ++i) {
        const unsigned long long y = as[i].x + MO - as[i + m].x;  // < 2 MO
        as[i].x += as[i + m].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
    }
  }
  if (m < n) {
    for (int i = 0; i < m; ++i) {
      const unsigned y = as[i].x + MO2 - as[i + m].x;  // < 4 MO
      as[i].x += as[i + m].x;  // < 4 MO
      as[i + m].x = y;  // < 4 MO
    }
  }
  const Mint invN = Mint(n).inv();
  for (int i = 0; i < n; ++i) {
    as[i] *= invN;
  }
}

void fft(vector<Mint> &as) {
  fft(as.data(), as.size());
}
void invFft(vector<Mint> &as) {
  invFft(as.data(), as.size());
}

vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) {
  if (as.empty() || bs.empty()) return {};
  const int len = as.size() + bs.size() - 1;
  int n = 1;
  for (; n < len; n <<= 1) {}
  as.resize(n); fft(as);
  bs.resize(n); fft(bs);
  for (int i = 0; i < n; ++i) as[i] *= bs[i];
  invFft(as);
  as.resize(len);
  return as;
}
vector<Mint> square(vector<Mint> as) {
  if (as.empty()) return {};
  const int len = as.size() + as.size() - 1;
  int n = 1;
  for (; n < len; n <<= 1) {}
  as.resize(n); fft(as);
  for (int i = 0; i < n; ++i) as[i] *= as[i];
  invFft(as);
  as.resize(len);
  return as;
}
////////////////////////////////////////////////////////////////////////////////


constexpr int LIM_INV = 250'010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];

void prepare() {
  inv[1] = 1;
  for (int i = 2; i < LIM_INV; ++i) {
    inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
  }
  fac[0] = invFac[0] = 1;
  for (int i = 1; i < LIM_INV; ++i) {
    fac[i] = fac[i - 1] * i;
    invFac[i] = invFac[i - 1] * inv[i];
  }
}


vector<Mint> brute(int D, int N, int A) {
  vector<Mint> ans(D + 1, 0);
  ans[0] = 1;
  vector<Mint> crt(N + 2, 1);
  crt[0] = crt[N + 1] = 0;
  for (int d = 1; d <= D; ++d) {
    vector<Mint> nxt(N + 2, 0);
    for (int i = 1; i <= N; ++i) {
      nxt[i - 1] += crt[i];
      nxt[i + 1] += crt[i];
    }
    nxt[0] = nxt[N + 1] = 0;
    ans[d] = nxt[A];
    crt = nxt;
  }
  return ans;
}

vector<Mint> ret;
void dfs(int l, int r, vector<Mint> fs) {
  {
    const int fsLen = fs.size();
    assert(fsLen & 1);
    assert(fsLen >= 2 * (r - l - 1) + 1);
    if (fsLen > 2 * (r - l - 1) + 1) {
      const int cut = (fsLen - (2 * (r - l - 1) + 1)) / 2;
      fs = vector<Mint>(fs.begin() + cut, fs.end() - cut);
    }
  }
  if (l + 1 == r) {
    ret[l] = fs[0];
  } else {
    const int mid = (l + r) / 2;
    dfs(l, mid, fs);
    // rev (x^-1 + x)^(mid-l)
    vector<Mint> coef(2 * (mid - l) + 1, 0);
    for (int i = 0; i <= mid - l; ++i) {
      coef[2 * i] = fac[mid - l] * invFac[i] * invFac[(mid - l) - i];
    }
    dfs(mid, r, convolve(coef, fs));
  }
}
/*
  ans[d] = [x^A] ((x^1 + ... + x^N - x^(N+2) - ... - x^(2N+1)) (x^-1 + x)^d mod (x^(2N+2) - 1))
  transpose
*/
vector<Mint> solve(int D, int N, int A) {
  // [-D, D]
  vector<Mint> fs(2 * D + 1, 0);
  for (int i = -D; i <= D; ++i) {
    int j = (A - i) % (2 * N + 2);
    if (j < 0) j += (2 * N + 2);
    if (1 <= j && j <= N) {
      fs[D + i] += 1;
    } else if (N + 2 <= j && j <= 2 * N + 1) {
      fs[D + i] -= 1;
    }
  }
  ret.assign(D + 1, 0);
  dfs(0, D + 1, fs);
  return ret;
}

int main() {
  prepare();
  
  int D, N[3], A[3];
  for (; ~scanf("%d", &D); ) {
    for (int h = 0; h < 3; ++h) scanf("%d", &N[h]);
    for (int h = 0; h < 3; ++h) scanf("%d", &A[h]);
    
    vector<Mint> fss[3];
    for (int h = 0; h < 3; ++h) {
      fss[h] = solve(D, N[h], A[h]);
      for (int d = 0; d <= D; ++d) {
        fss[h][d] *= invFac[d];
      }
    }
    const auto prod01 = convolve(fss[0], fss[1]);
    Mint ans = 0;
    for (int d = 0; d <= D; ++d) {
      ans += prod01[d] * fss[2][D - d];
    }
    ans *= fac[D];
    printf("%u\n", ans.x);
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 5
Accepted

Test #1:

score: 5
Accepted
time: 0ms
memory: 7020kb

input:

50 41 46 42 8 20 21

output:

791406134

result:

ok 1 number(s): "791406134"

Test #2:

score: 0
Accepted
time: 3ms
memory: 7020kb

input:

50 49 44 48 49 15 25

output:

544847893

result:

ok 1 number(s): "544847893"

Subtask #2:

score: 10
Accepted

Dependency #1:

100%
Accepted

Test #3:

score: 10
Accepted
time: 23ms
memory: 7248kb

input:

5000 4994 4990 4990 976 2257 2505

output:

836390717

result:

ok 1 number(s): "836390717"

Test #4:

score: 0
Accepted
time: 22ms
memory: 7248kb

input:

5000 4994 4997 4994 4399 1826 1332

output:

65414465

result:

ok 1 number(s): "65414465"

Subtask #3:

score: 15
Accepted

Test #5:

score: 15
Accepted
time: 909ms
memory: 15984kb

input:

120000 300 1 1 141 1 1

output:

637174

result:

ok 1 number(s): "637174"

Test #6:

score: 0
Accepted
time: 917ms
memory: 15976kb

input:

120000 994 1 1 15 1 1

output:

218803691

result:

ok 1 number(s): "218803691"

Test #7:

score: 0
Accepted
time: 904ms
memory: 16052kb

input:

120000 119999 1 1 19896 1 1

output:

68846585

result:

ok 1 number(s): "68846585"

Subtask #4:

score: 10
Accepted

Test #8:

score: 10
Accepted
time: 907ms
memory: 16060kb

input:

119000 119991 119991 1 23819 52139 1

output:

944500934

result:

ok 1 number(s): "944500934"

Subtask #5:

score: 15
Accepted

Dependency #4:

100%
Accepted

Test #9:

score: 15
Accepted
time: 903ms
memory: 15992kb

input:

120000 13997 13996 1 42 9266 1

output:

775637357

result:

ok 1 number(s): "775637357"

Test #10:

score: 0
Accepted
time: 912ms
memory: 15872kb

input:

120000 13997 13997 1 9768 6131 1

output:

151873213

result:

ok 1 number(s): "151873213"

Subtask #6:

score: 35
Accepted

Dependency #3:

100%
Accepted

Dependency #5:

100%
Accepted

Test #11:

score: 35
Accepted
time: 915ms
memory: 15868kb

input:

120000 294 296 1 142 273 1

output:

889786082

result:

ok 1 number(s): "889786082"

Test #12:

score: 0
Accepted
time: 912ms
memory: 15936kb

input:

120000 395 390 1 370 185 1

output:

884557050

result:

ok 1 number(s): "884557050"

Test #13:

score: 0
Accepted
time: 907ms
memory: 15976kb

input:

120000 491 495 1 430 25 1

output:

272929924

result:

ok 1 number(s): "272929924"

Test #14:

score: 0
Accepted
time: 908ms
memory: 15964kb

input:

120000 590 593 1 418 459 1

output:

446962505

result:

ok 1 number(s): "446962505"

Test #15:

score: 0
Accepted
time: 917ms
memory: 15884kb

input:

120000 697 690 1 166 450 1

output:

216092107

result:

ok 1 number(s): "216092107"

Test #16:

score: 0
Accepted
time: 915ms
memory: 16100kb

input:

120000 793 799 1 416 61 1

output:

661260042

result:

ok 1 number(s): "661260042"

Test #17:

score: 0
Accepted
time: 914ms
memory: 15992kb

input:

120000 1000 1000 1 613 547 1

output:

429669083

result:

ok 1 number(s): "429669083"

Test #18:

score: 0
Accepted
time: 891ms
memory: 15888kb

input:

120000 1993 1995 1 493 565 1

output:

609392900

result:

ok 1 number(s): "609392900"

Test #19:

score: 0
Accepted
time: 910ms
memory: 15952kb

input:

120000 4995 4998 1 3166 3765 1

output:

394497547

result:

ok 1 number(s): "394497547"

Test #20:

score: 0
Accepted
time: 913ms
memory: 15916kb

input:

120000 9994 9991 1 6099 691 1

output:

795651799

result:

ok 1 number(s): "795651799"

Test #21:

score: 0
Accepted
time: 907ms
memory: 15968kb

input:

120000 49990 49990 1 41933 2862 1

output:

360787513

result:

ok 1 number(s): "360787513"

Test #22:

score: 0
Accepted
time: 910ms
memory: 15876kb

input:

120000 119996 119994 1 58014 49559 1

output:

682979057

result:

ok 1 number(s): "682979057"

Subtask #7:

score: 10
Accepted

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Dependency #3:

100%
Accepted

Dependency #4:

100%
Accepted

Dependency #5:

100%
Accepted

Dependency #6:

100%
Accepted

Test #23:

score: 10
Accepted
time: 907ms
memory: 15980kb

input:

120000 296 300 297 89 130 280

output:

702788425

result:

ok 1 number(s): "702788425"

Test #24:

score: 0
Accepted
time: 904ms
memory: 16056kb

input:

120000 392 397 391 222 280 10

output:

322470184

result:

ok 1 number(s): "322470184"

Test #25:

score: 0
Accepted
time: 913ms
memory: 15992kb

input:

120000 499 498 500 263 315 367

output:

449848666

result:

ok 1 number(s): "449848666"

Test #26:

score: 0
Accepted
time: 909ms
memory: 15884kb

input:

120000 598 591 594 497 474 400

output:

35486519

result:

ok 1 number(s): "35486519"

Test #27:

score: 0
Accepted
time: 907ms
memory: 16172kb

input:

120000 694 692 695 625 173 477

output:

785203749

result:

ok 1 number(s): "785203749"

Test #28:

score: 0
Accepted
time: 912ms
memory: 15872kb

input:

120000 794 796 800 395 465 507

output:

897269426

result:

ok 1 number(s): "897269426"

Test #29:

score: 0
Accepted
time: 906ms
memory: 15872kb

input:

120000 993 998 991 196 712 911

output:

464727191

result:

ok 1 number(s): "464727191"

Test #30:

score: 0
Accepted
time: 913ms
memory: 16096kb

input:

120000 1991 2000 1994 1937 1362 1494

output:

473701811

result:

ok 1 number(s): "473701811"

Test #31:

score: 0
Accepted
time: 912ms
memory: 15920kb

input:

120000 4994 4990 4990 646 1214 2276

output:

763540821

result:

ok 1 number(s): "763540821"

Test #32:

score: 0
Accepted
time: 903ms
memory: 15980kb

input:

120000 9994 9992 9991 6588 9538 2632

output:

804858722

result:

ok 1 number(s): "804858722"

Test #33:

score: 0
Accepted
time: 914ms
memory: 15980kb

input:

120000 49997 49997 49993 46278 44140 26931

output:

139550295

result:

ok 1 number(s): "139550295"

Test #34:

score: 0
Accepted
time: 902ms
memory: 16108kb

input:

120000 119997 120000 120000 24867 116477 35338

output:

946147605

result:

ok 1 number(s): "946147605"