QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#183697#4900. 数列重排hos_lyric100 ✓176ms91204kbC++147.8kb2023-09-19 19:24:222023-09-19 19:24:22

Judging History

你现在查看的是最新测评结果

  • [2023-09-19 19:24:22]
  • 评测
  • 测评结果:100
  • 用时:176ms
  • 内存:91204kb
  • [2023-09-19 19:24:22]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;


constexpr Int INF = 1001001001001001001LL;

/*
  (N-L) 0's, L 1's
  maximize # of intervals containing K 1's
  
  0^x[0] 1^y[0] 0^x[1] 1^y[1] ... 0^x[p-1] 1^y[p-1] 0^x[p]
  y[i] >= K  (looks good)
  
  bad intervals:
    0...0: \sum[0<=i<=p] x[i]*(x[i]+1)/2
    1...1: \sum[1<=k<=K-1] (L+1-k)  (fixed)
    0...1, 1...0: (K-1) x[0] + \sum[1<=i<=p-1] 2 (K-1) x[i] + (K-1) x[p]
  
  x[0], x[p]: almost same
  x[1], ..., x[p-1]: almost same
  maximize p
*/
Int slow(Int K, Int N, Int L) {
  assert(K <= L); assert(L <= N);
  if (K == 0) {
    return N * (N + 1) / 2;
  }
  auto costEnd = [&](Int x) -> Int {
    return x*(x+1)/2 + (K-1) * x;
  };
  auto costMid = [&](Int x) -> Int {
    return x*(x+1)/2 + 2 * (K-1) * x;
  };
  Int mn = INF;
  const Int p = L / K;
  if (p == 1) {
    const Int x0 = (N-L) / 2;
    const Int xp = (N-L) - x0;
    Int cost = 0;
    cost += costEnd(x0);
    cost += costEnd(xp);
    chmin(mn, cost);
  } else {
    // fix x[0] + x[p] = s
    for (Int s = 0; s <= N-L; ++s) {
      const Int x0 = s / 2;
      const Int xp = s - x0;
      const Int q = (N-L - s) / (p-1);
      const Int r = (N-L - s) % (p-1);
      Int cost = 0;
      cost += costEnd(x0);
      cost += costEnd(xp);
      cost += (p-1 - r) * costMid(q);
      cost += r * costMid(q+1);
      chmin(mn, cost);
    }
  }
  Int ret = N * (N + 1) / 2;
  ret -= (K-1) * (L + (L-K+2)) / 2;
  ret -= mn;
  return ret;
}

/*
  x[0] + x[1] + ... + x[p-1] + x[p] = N-L
  minimize f(x[0]) + g(x[1]) + ... + g(x[p-1]) + f(x[p])
  f(x) := x*(x+1)/2 + (K-1) x
  g(x) := x*(x+1)/2 + 2 (K-1) x
  
  f(x+1) - f(x) = x + K
  g(x+1) - g(x) = x + (2K-1)
*/
Int fast(Int K, Int N, Int L) {
  assert(K <= L); assert(L <= N);
  if (K == 0) {
    return N * (N + 1) / 2;
  }
  const Int p = L / K;
  Int cost = 0;
  auto f = [&](Int x) -> Int {
    return x*(x+1)/2 + (K-1) * x;
  };
  auto g = [&](Int x) -> Int {
    return x*(x+1)/2 + 2 * (K-1) * x;
  };
  if (N-L < 2 * (K-1)) {
    const Int x0 = (N-L) / 2;
    const Int xp = (N-L) - x0;
    cost += f(x0);
    cost += f(xp);
  } else {
    const Int lot = (N-L) - 2 * (K-1);
    const Int q = lot / (p + 1);
    const Int r = lot % (p + 1);
    cost += f((K-1) + q + ((0 < r) ? 1 : 0));
    cost += f((K-1) + q + ((1 < r) ? 1 : 0));
    cost += max(r - 2, 0LL) * g(q + 1);
    cost += (p-1 - max(r - 2, 0LL)) * g(q);
  }
  Int ret = N * (N + 1) / 2;
  ret -= (K-1) * (L + (L-K+2)) / 2;
  ret -= cost;
  return ret;
}

void stress() {
  constexpr int lim = 20;
  for (int k = 0; k <= lim; ++k) {
    printf("k = %2d\n", k);
    for (int n = k; n <= lim; ++n) {
      for (int l = k; l <= n; ++l) {
        int mx = -1;
        int pm = -1;
        for (int p = 0; p < 1 << n; ++p) if (__builtin_popcount(p) == l) {
          int cnt = 0;
          for (int i = 0; i < n; ++i) {
            int now = 0;
            for (int j = i; j < n; ++j) {
              now += (p >> j & 1);
              if (now >= k) ++cnt;
            }
          }
          if (chmax(mx, cnt)) {
            pm = p;
          }
        }
        const Int slw = slow(k, n, l);
        const Int fst = fast(k, n, l);
        printf("%2d %2d %2d: %3d %3lld %3lld ", k, n, l, mx, slw, fst);
        for (int i = 0; i < n; ++i) printf("%d", pm >> i & 1);
        puts("");
        assert(mx == slw);
        assert(mx == fst);
      }
    }
    fflush(stdout);
  }
}


int M, L, R;
Int X, N;
char S[10'000'010];

int main() {
  // stress(); return 0;
  
  for (; ~scanf("%d%d%d%lld", &M, &L, &R, &X); ) {
    scanf("%s", S);
    N = M * X + count(S, S + M, '1');
cerr<<"M = "<<M<<", N = "<<N<<endl;
    
    vector<Int> ans(M + 1, 0);
    Int sum = 0;
    for (int k = 0; ; ++k) {
      ans[k] = fast(k, N, sum);
      if (k == M) break;
      sum += X + (S[k] - '0');
    }
// cerr<<"ans = "<<ans<<endl;
    
    unsigned key = 0;
    Mint wt = Mint(233).pow(L);
    for (int k = L; k <= R; ++k) {
      key ^= (wt * ans[k]).x;
      wt *= 233;
    }
    printf("%u\n", key);
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 5
Accepted

Test #1:

score: 5
Accepted
time: 1ms
memory: 3732kb

input:

2 0 2 2
01

output:

541257

result:

ok 1 number(s): "541257"

Test #2:

score: 0
Accepted
time: 1ms
memory: 3612kb

input:

4 1 4 2
00001

output:

525797597

result:

ok 1 number(s): "525797597"

Test #3:

score: 0
Accepted
time: 1ms
memory: 3700kb

input:

9 0 9 1
000000000

output:

711136343

result:

ok 1 number(s): "711136343"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3616kb

input:

1 0 1 9
0

output:

10456

result:

ok 1 number(s): "10456"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3748kb

input:

2 1 2 3
11


output:

1518844

result:

ok 1 number(s): "1518844"

Subtask #2:

score: 15
Accepted

Dependency #1:

100%
Accepted

Test #6:

score: 15
Accepted
time: 1ms
memory: 3668kb

input:

21 0 21 9
111010011100100100000

output:

171658329

result:

ok 1 number(s): "171658329"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3784kb

input:

200 0 200 1
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

output:

287932632

result:

ok 1 number(s): "287932632"

Test #8:

score: 0
Accepted
time: 1ms
memory: 3680kb

input:

120 3 119 1
101000110101001100011100001011101110101010000011101110010101101000111100111100001001010010110001110011001010110001101111

output:

856785458

result:

ok 1 number(s): "856785458"

Test #9:

score: 0
Accepted
time: 0ms
memory: 3728kb

input:

2 0 2 99
10

output:

67513337

result:

ok 1 number(s): "67513337"

Subtask #3:

score: 15
Accepted

Dependency #2:

100%
Accepted

Test #10:

score: 15
Accepted
time: 0ms
memory: 3684kb

input:

10 1 9 499
0110011010

output:

47418354

result:

ok 1 number(s): "47418354"

Test #11:

score: 0
Accepted
time: 0ms
memory: 3700kb

input:

100 0 100 49
1100100011111101111111001000000100010000101010110000011011110100100011111000111101100010001000001100

output:

100314042

result:

ok 1 number(s): "100314042"

Test #12:

score: 0
Accepted
time: 1ms
memory: 3688kb

input:

1000 0 1000 4
1011110001101000100110000111011110101100110011100010001100001101000111100011100011110101000010000100101011010110000110100011011010011000111100100100100001000011001000000000111001010001000000110001001011100010011101010011011110001101000010010000101000100001111101001100100001010010001100...

output:

738329201

result:

ok 1 number(s): "738329201"

Test #13:

score: 0
Accepted
time: 1ms
memory: 3776kb

input:

5000 0 5000 1
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

76076468

result:

ok 1 number(s): "76076468"

Subtask #4:

score: 5
Accepted

Test #14:

score: 5
Accepted
time: 0ms
memory: 3732kb

input:

2 0 1 114514
10

output:

934764137

result:

ok 1 number(s): "934764137"

Test #15:

score: 0
Accepted
time: 0ms
memory: 3680kb

input:

2 0 1 1919810
01

output:

685371514

result:

ok 1 number(s): "685371514"

Test #16:

score: 0
Accepted
time: 0ms
memory: 3700kb

input:

2 0 1 500000000
00

output:

318651831

result:

ok 1 number(s): "318651831"

Subtask #5:

score: 10
Accepted

Test #17:

score: 10
Accepted
time: 12ms
memory: 14036kb

input:

1000000 1000000 1000000 928
01100010010000000101111110001111011101111000011110100101011110011001001000011000110101101100111110000100101010111001111100010011100110000000111110110100001100000000011101100001010001010000010000001001000110011111010101111100001001110110010100000011000010010001111010011100...

output:

437299311

result:

ok 1 number(s): "437299311"

Test #18:

score: 0
Accepted
time: 0ms
memory: 3696kb

input:

100 100 100 10000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

output:

119118463

result:

ok 1 number(s): "119118463"

Subtask #6:

score: 10
Accepted

Test #19:

score: 10
Accepted
time: 11ms
memory: 11924kb

input:

1000000 0 1000000 1
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

852768823

result:

ok 1 number(s): "852768823"

Test #20:

score: 0
Accepted
time: 14ms
memory: 12024kb

input:

1000000 0 1000000 1
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

852768823

result:

ok 1 number(s): "852768823"

Subtask #7:

score: 15
Accepted

Test #21:

score: 15
Accepted
time: 13ms
memory: 11996kb

input:

1000000 0 9823 627
01110001011101001100010011100101001011000011011110001101010000000101010111110111110010010001110100101001111000111100011101111001000000100111000010010100010101110110111110100010101010001110111001100011010001111000101010000110010010101110101010111110110001110111111000001110000110011...

output:

383638431

result:

ok 1 number(s): "383638431"

Test #22:

score: 0
Accepted
time: 11ms
memory: 11888kb

input:

1000000 456755 465755 982
0100111111100111100010100011110111111101011111101110010011101011110011111010110000110001101001011101000110111100110100101111101011111010101011101000011101100000000111000010101011011000111010101101111011100101010010000110101011110010101011111101110101100010000100001110000100...

output:

982882798

result:

ok 1 number(s): "982882798"

Test #23:

score: 0
Accepted
time: 1ms
memory: 3684kb

input:

1000 0 1000 999999
11101000001100101110100011011111010000110101000000010101111010110110100110000001101110100011010111001000000010110101110001010111101000100010010010110000000001011110010010101111110000100001000111000010110001100100011100001000111001110110001010100000110110000110001111101101000010111...

output:

337235666

result:

ok 1 number(s): "337235666"

Test #24:

score: 0
Accepted
time: 12ms
memory: 11888kb

input:

1000000 990001 1000000 999
110110000110101111001000001001011000010000101001111110001101100011001001111001010001110110010111110100000101110000101101000111001100010100010100001001001011011100001010111100110110011001110010001110011001111100011001100111110000111011011100100100011111101100011000100011011...

output:

794028825

result:

ok 1 number(s): "794028825"

Subtask #8:

score: 15
Accepted

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Dependency #3:

100%
Accepted

Dependency #4:

100%
Accepted

Dependency #5:

100%
Accepted

Dependency #6:

100%
Accepted

Dependency #7:

100%
Accepted

Test #25:

score: 15
Accepted
time: 14ms
memory: 14024kb

input:

1000000 1 999999 632
111111100000011110001111101100010010111100000010101111111001010001101011101110001010010101001000111110101010100010011001101111011111011000011111011100101011110011000100100110111100101010000110010011110010111011001011001001001111000100000011101001100011011001100100011010000010100...

output:

610044514

result:

ok 1 number(s): "610044514"

Test #26:

score: 0
Accepted
time: 18ms
memory: 13524kb

input:

1000000 0 1000000 888
11011001110110111010100110110001000101110100001111110000011110101010110001100101010001110101010111001110100000110101000000011001111100100000010101100000011100110001011010110100001100111010100111011000110100100101110010100001100100000101000001101011010111001000101001110001111000...

output:

255140225

result:

ok 1 number(s): "255140225"

Test #27:

score: 0
Accepted
time: 21ms
memory: 11988kb

input:

1000000 0 1000000 1000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

1066353724

result:

ok 1 number(s): "1066353724"

Test #28:

score: 0
Accepted
time: 0ms
memory: 3676kb

input:

100 0 100 9999999
1000101010111010100001001100001001100101000000111000000000111010000000000000101001110011001000111011

output:

583823543

result:

ok 1 number(s): "583823543"

Test #29:

score: 0
Accepted
time: 40ms
memory: 22760kb

input:

2000000 0 2000000 499
11100010011000101100101001000010010011110000000110011101001000100010101101010001011001001011100000111010100110011111001100100101000001000010010000000000011111011100100100110001110011101100110101001011011101001111010100010011001101111110110100010011110111010110100000101100101100...

output:

356463868

result:

ok 1 number(s): "356463868"

Test #30:

score: 0
Accepted
time: 36ms
memory: 20868kb

input:

2000000 0 2000000 499
00010101111100001110110010101100100111001010011100011011001100101001001111110001010011100000001101010001111000000010111011111110111010111010010010000011011110001110010000000000110000101110110101010011101101011001011001011110100010101000000011010100010010101000010111101110000111...

output:

111807544

result:

ok 1 number(s): "111807544"

Subtask #9:

score: 10
Accepted

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Dependency #3:

100%
Accepted

Dependency #4:

100%
Accepted

Dependency #5:

100%
Accepted

Dependency #6:

100%
Accepted

Dependency #7:

100%
Accepted

Dependency #8:

100%
Accepted

Test #31:

score: 10
Accepted
time: 171ms
memory: 90948kb

input:

10000000 0 10000000 99
0011100100001001101101010011001111100000001110100000000100110100110110111110010010001001100100000111111100111100001110101001011101000101001001001010001011110101001101011001110011100011010101001101001111000010110011010000011011110110100001001101110111101101010011010011111111011...

output:

704917900

result:

ok 1 number(s): "704917900"

Test #32:

score: 0
Accepted
time: 176ms
memory: 91204kb

input:

10000000 0 10000000 99
1101011001100000100101000101100000011010001111111111000000001011001111101101100100001100001100000001000011110001101010001001100001011110100101011010000011001011110010011000111101100000001100001100000100000011000101110000001001100111001011011000101110001101110010001110001110111...

output:

850705320

result:

ok 1 number(s): "850705320"