QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#183677#4900. 数列重排hos_lyric45 14ms14064kbC++146.7kb2023-09-19 19:13:102023-09-19 19:13:11

Judging History

你现在查看的是最新测评结果

  • [2023-09-19 19:13:11]
  • 评测
  • 测评结果:45
  • 用时:14ms
  • 内存:14064kb
  • [2023-09-19 19:13:10]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;


constexpr Int INF = 1001001001001001001LL;

/*
  (N-L) 0's, L 1's
  maximize # of intervals containing K 1's
  
  0^x[0] 1^y[0] 0^x[1] 1^y[1] ... 0^x[p-1] 1^y[p-1] 0^x[p]
  y[i] >= K  (looks good)
  
  bad intervals:
    0...0: \sum[0<=i<=p] x[i]*(x[i]+1)/2
    1...1: \sum[1<=k<=K-1] (L+1-k)  (fixed)
    0...1, 1...0: (K-1) x[0] + \sum[1<=i<=p-1] 2 (K-1) x[i] + (K-1) x[p]
  
  x[0], x[p]: almost same
  x[1], ..., x[p-1]: almost same
  maximize p
*/
Int calc(Int K, Int N, Int L) {
  assert(K <= L); assert(L <= N);
  if (K == 0) {
    return N * (N + 1) / 2;
  }
  auto costEnd = [&](Int x) -> Int {
    return x*(x+1)/2 + (K-1) * x;
  };
  auto costMid = [&](Int x) -> Int {
    return x*(x+1)/2 + 2 * (K-1) * x;
  };
  Int mn = INF;
  const Int p = L / K;
  if (p == 1) {
    const Int x0 = (N-L) / 2;
    const Int xp = (N-L) - x0;
    Int cost = 0;
    cost += costEnd(x0);
    cost += costEnd(xp);
    chmin(mn, cost);
  } else {
    // fix x[0] + x[p] = s
    for (Int s = 0; s <= N-L; ++s) {
      const Int x0 = s / 2;
      const Int xp = s - x0;
      const Int q = (N-L - s) / (p-1);
      const Int r = (N-L - s) % (p-1);
      Int cost = 0;
      cost += costEnd(x0);
      cost += costEnd(xp);
      cost += (p-1 - r) * costMid(q);
      cost += r * costMid(q+1);
      chmin(mn, cost);
    }
  }
  Int ret = N * (N + 1) / 2;
  ret -= (K-1) * (L + (L-K+2)) / 2;
  ret -= mn;
  return ret;
}

void stress() {
  constexpr int lim = 20;
  for (int k = 0; k <= lim; ++k) {
    printf("k = %2d\n", k);
    for (int n = k; n <= lim; ++n) {
      for (int l = k; l <= n; ++l) {
        int mx = -1;
        int pm = -1;
        for (int p = 0; p < 1 << n; ++p) if (__builtin_popcount(p) == l) {
          int cnt = 0;
          for (int i = 0; i < n; ++i) {
            int now = 0;
            for (int j = i; j < n; ++j) {
              now += (p >> j & 1);
              if (now >= k) ++cnt;
            }
          }
          if (chmax(mx, cnt)) {
            pm = p;
          }
        }
        const Int res = calc(k, n, l);
        printf("%2d %2d %2d: %3d %3lld ", k, n, l, mx, res);
        for (int i = 0; i < n; ++i) printf("%d", pm >> i & 1);
        puts("");
        assert(mx == res);
      }
    }
    fflush(stdout);
  }
}


int M, L, R;
Int X, N;
char S[10'000'010];

int main() {
  // stress(); return 0;
  
  for (; ~scanf("%d%d%d%lld", &M, &L, &R, &X); ) {
    scanf("%s", S);
    N = M * X + count(S, S + M, '1');
cerr<<"M = "<<M<<", N = "<<N<<endl;
    
    vector<Int> ans(M + 1, 0);
    Int sum = 0;
    for (int k = 0; ; ++k) {
      ans[k] = calc(k, N, sum);
      if (k == M) break;
      sum += X + (S[k] - '0');
    }
// cerr<<"ans = "<<ans<<endl;
    
    unsigned key = 0;
    Mint wt = Mint(233).pow(L);
    for (int k = L; k <= R; ++k) {
      key ^= (wt * ans[k]).x;
      wt *= 233;
    }
    printf("%u\n", key);
  }
  return 0;
}

详细

Subtask #1:

score: 5
Accepted

Test #1:

score: 5
Accepted
time: 0ms
memory: 3884kb

input:

2 0 2 2
01

output:

541257

result:

ok 1 number(s): "541257"

Test #2:

score: 0
Accepted
time: 0ms
memory: 4060kb

input:

4 1 4 2
00001

output:

525797597

result:

ok 1 number(s): "525797597"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3840kb

input:

9 0 9 1
000000000

output:

711136343

result:

ok 1 number(s): "711136343"

Test #4:

score: 0
Accepted
time: 0ms
memory: 4064kb

input:

1 0 1 9
0

output:

10456

result:

ok 1 number(s): "10456"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3812kb

input:

2 1 2 3
11


output:

1518844

result:

ok 1 number(s): "1518844"

Subtask #2:

score: 15
Accepted

Dependency #1:

100%
Accepted

Test #6:

score: 15
Accepted
time: 0ms
memory: 4108kb

input:

21 0 21 9
111010011100100100000

output:

171658329

result:

ok 1 number(s): "171658329"

Test #7:

score: 0
Accepted
time: 0ms
memory: 4104kb

input:

200 0 200 1
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

output:

287932632

result:

ok 1 number(s): "287932632"

Test #8:

score: 0
Accepted
time: 0ms
memory: 3820kb

input:

120 3 119 1
101000110101001100011100001011101110101010000011101110010101101000111100111100001001010010110001110011001010110001101111

output:

856785458

result:

ok 1 number(s): "856785458"

Test #9:

score: 0
Accepted
time: 0ms
memory: 4088kb

input:

2 0 2 99
10

output:

67513337

result:

ok 1 number(s): "67513337"

Subtask #3:

score: 15
Accepted

Dependency #2:

100%
Accepted

Test #10:

score: 15
Accepted
time: 0ms
memory: 3808kb

input:

10 1 9 499
0110011010

output:

47418354

result:

ok 1 number(s): "47418354"

Test #11:

score: 0
Accepted
time: 1ms
memory: 3860kb

input:

100 0 100 49
1100100011111101111111001000000100010000101010110000011011110100100011111000111101100010001000001100

output:

100314042

result:

ok 1 number(s): "100314042"

Test #12:

score: 0
Accepted
time: 11ms
memory: 4112kb

input:

1000 0 1000 4
1011110001101000100110000111011110101100110011100010001100001101000111100011100011110101000010000100101011010110000110100011011010011000111100100100100001000011001000000000111001010001000000110001001011100010011101010011011110001101000010010000101000100001111101001100100001010010001100...

output:

738329201

result:

ok 1 number(s): "738329201"

Test #13:

score: 0
Accepted
time: 0ms
memory: 3920kb

input:

5000 0 5000 1
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

76076468

result:

ok 1 number(s): "76076468"

Subtask #4:

score: 0
Time Limit Exceeded

Test #14:

score: 5
Accepted
time: 1ms
memory: 3804kb

input:

2 0 1 114514
10

output:

934764137

result:

ok 1 number(s): "934764137"

Test #15:

score: 0
Accepted
time: 9ms
memory: 3800kb

input:

2 0 1 1919810
01

output:

685371514

result:

ok 1 number(s): "685371514"

Test #16:

score: -5
Time Limit Exceeded

input:

2 0 1 500000000
00

output:


result:


Subtask #5:

score: 0
Time Limit Exceeded

Test #17:

score: 0
Time Limit Exceeded

input:

1000000 1000000 1000000 928
01100010010000000101111110001111011101111000011110100101011110011001001000011000110101101100111110000100101010111001111100010011100110000000111110110100001100000000011101100001010001010000010000001001000110011111010101111100001001110110010100000011000010010001111010011100...

output:


result:


Subtask #6:

score: 10
Accepted

Test #19:

score: 10
Accepted
time: 10ms
memory: 12132kb

input:

1000000 0 1000000 1
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

852768823

result:

ok 1 number(s): "852768823"

Test #20:

score: 0
Accepted
time: 14ms
memory: 14064kb

input:

1000000 0 1000000 1
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

852768823

result:

ok 1 number(s): "852768823"

Subtask #7:

score: 0
Time Limit Exceeded

Test #21:

score: 0
Time Limit Exceeded

input:

1000000 0 9823 627
01110001011101001100010011100101001011000011011110001101010000000101010111110111110010010001110100101001111000111100011101111001000000100111000010010100010101110110111110100010101010001110111001100011010001111000101010000110010010101110101010111110110001110111111000001110000110011...

output:


result:


Subtask #8:

score: 0
Skipped

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Dependency #3:

100%
Accepted

Dependency #4:

0%

Subtask #9:

score: 0
Skipped

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Dependency #3:

100%
Accepted

Dependency #4:

0%