QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#182746#6522. Digit Modeucup-team004AC ✓1063ms3868kbC++209.9kb2023-09-18 15:01:252023-09-18 15:01:25

Judging History

你现在查看的是最新测评结果

  • [2023-09-18 15:01:25]
  • 评测
  • 测评结果:AC
  • 用时:1063ms
  • 内存:3868kb
  • [2023-09-18 15:01:25]
  • 提交

answer

#include <bits/stdc++.h>

using i64 = long long;
template<class T>
constexpr T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}

constexpr i64 mul(i64 a, i64 b, i64 p) {
    i64 res = a * b - i64(1.L * a * b / p) * p;
    res %= p;
    if (res < 0) {
        res += p;
    }
    return res;
}
template<i64 P>
struct MLong {
    i64 x;
    constexpr MLong() : x{} {}
    constexpr MLong(i64 x) : x{norm(x % getMod())} {}
    
    static i64 Mod;
    constexpr static i64 getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(i64 Mod_) {
        Mod = Mod_;
    }
    constexpr i64 norm(i64 x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr i64 val() const {
        return x;
    }
    explicit constexpr operator i64() const {
        return x;
    }
    constexpr MLong operator-() const {
        MLong res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MLong inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MLong &operator*=(MLong rhs) & {
        x = mul(x, rhs.x, getMod());
        return *this;
    }
    constexpr MLong &operator+=(MLong rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MLong &operator-=(MLong rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MLong &operator/=(MLong rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MLong operator*(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MLong operator+(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MLong operator-(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MLong operator/(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
        i64 v;
        is >> v;
        a = MLong(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MLong lhs, MLong rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MLong lhs, MLong rhs) {
        return lhs.val() != rhs.val();
    }
};

template<>
i64 MLong<0LL>::Mod = 1;

template<int P>
struct MInt {
    int x;
    constexpr MInt() : x{} {}
    constexpr MInt(i64 x) : x{norm(x % getMod())} {}
    
    static int Mod;
    constexpr static int getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(int Mod_) {
        Mod = Mod_;
    }
    constexpr int norm(int x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr int val() const {
        return x;
    }
    explicit constexpr operator int() const {
        return x;
    }
    constexpr MInt operator-() const {
        MInt res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MInt inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MInt &operator*=(MInt rhs) & {
        x = 1LL * x * rhs.x % getMod();
        return *this;
    }
    constexpr MInt &operator+=(MInt rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MInt &operator-=(MInt rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MInt &operator/=(MInt rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MInt operator*(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MInt operator+(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MInt operator-(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MInt operator/(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
        i64 v;
        is >> v;
        a = MInt(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MInt lhs, MInt rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MInt lhs, MInt rhs) {
        return lhs.val() != rhs.val();
    }
};

template<>
int MInt<0>::Mod = 1;

template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();

constexpr int P = 1000000007;
using Z = MInt<P>;


struct Comb {
    int n;
    std::vector<Z> _fac;
    std::vector<Z> _invfac;
    std::vector<Z> _inv;
    
    Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
    Comb(int n) : Comb() {
        init(n);
    }
    
    void init(int m) {
        if (m <= n) return;
        _fac.resize(m + 1);
        _invfac.resize(m + 1);
        _inv.resize(m + 1);
        
        for (int i = n + 1; i <= m; i++) {
            _fac[i] = _fac[i - 1] * i;
        }
        _invfac[m] = _fac[m].inv();
        for (int i = m; i > n; i--) {
            _invfac[i - 1] = _invfac[i] * i;
            _inv[i] = _invfac[i] * _fac[i - 1];
        }
        n = m;
    }
    
    Z fac(int m) {
        if (m > n) init(2 * m);
        return _fac[m];
    }
    Z invfac(int m) {
        if (m > n) init(2 * m);
        return _invfac[m];
    }
    Z inv(int m) {
        if (m > n) init(2 * m);
        return _inv[m];
    }
    Z binom(int n, int m) {
        if (n < m || m < 0) return 0;
        return fac(n) * invfac(m) * invfac(n - m);
    }
} comb;


void solve() {
    std::string s;
    std::cin >> s;
    
    int n = s.size();
    
    std::vector binom(n + 1, std::vector<Z>(n + 1));
    for (int i = 0; i <= n; i++) {
        for (int j = 0; j <= i; j++) {
            binom[i][j] = comb.binom(i, j);
        }
    }
    
    Z ans = 0;
    
    for (int mode = 0; mode < 10; mode++) {
        for (int cnt = 1; cnt <= n; cnt++) {
            std::vector<int> freq(10);
            for (int i = 1; i < n; i++) {
                int res = n - (i + 1);
                int lo = 1;
                int hi = 9;
                std::vector dp(res + 1, std::array<Z, 2>{});
                dp[0][0] = 1;
                for (int c = 0; c < 10; c++) {
                    for (int sum = res; sum >= 0; sum--) {
                        int lim = (c <= mode ? cnt : cnt - 1);
                        for (int t = 1; t >= 0; t--) {
                            Z val = dp[sum][t];
                            dp[sum][t] = 0;
                            for (int i = 0; i <= lim && i + sum <= res; i++) {
                                for (int j = 0; j + t <= 1 && i + j <= lim; j++) {
                                    if (i + j < lim && c == mode) {
                                        continue;
                                    }
                                    if (j && (c < lo || c > hi)) {
                                        continue;
                                    }
                                    dp[sum + i][t + j] += val * binom[sum + i][i];
                                }
                            }
                        }
                    }
                }
                ans += dp[res][1] * mode;
            }
            for (int i = 0; i < n; i++) {
                int res = n - (i + 1);
                int lo = (i == 0 ? 1 : 0);
                int hi = s[i] - '0' - 1;
                std::vector dp(res + 1, std::array<Z, 2>{});
                dp[0][0] = 1;
                for (int c = 0; c < 10; c++) {
                    for (int sum = res; sum >= 0; sum--) {
                        int lim = (c <= mode ? cnt : cnt - 1) - freq[c];
                        for (int t = 1; t >= 0; t--) {
                            Z val = dp[sum][t];
                            dp[sum][t] = 0;
                            for (int i = 0; i <= lim && i + sum <= res; i++) {
                                for (int j = 0; j + t <= 1 && i + j <= lim; j++) {
                                    if (i + j < lim && c == mode) {
                                        continue;
                                    }
                                    if (j && (c < lo || c > hi)) {
                                        continue;
                                    }
                                    dp[sum + i][t + j] += val * binom[sum + i][i];
                                }
                            }
                        }
                    }
                }
                ans += dp[res][1] * mode;
                freq[s[i] - '0']++;
            }
        }
    }
    
    std::vector<int> freq(10);
    for (auto c : s) {
        freq[c - '0']++;
    }
    int mode = 0;
    for (int i = 0; i < 10; i++) {
        if (freq[i] >= freq[mode]) {
            mode = i;
        }
    }
    ans += mode;
    
    std::cout << ans << "\n";
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int t;
    std::cin >> t;
    
    while (t--) {
        solve();
    }
    
    return 0;
}

詳細信息

Test #1:

score: 100
Accepted
time: 1ms
memory: 3568kb

input:

5
9
99
999
99999
999999

output:

45
615
6570
597600
5689830

result:

ok 5 number(s): "45 615 6570 597600 5689830"

Test #2:

score: 0
Accepted
time: 1ms
memory: 3556kb

input:

34
7
48
8
76
1
97
7
5
7
7
2
89
9
4
84
46
6
73
86
78
5
3
8
9
31
24
78
7
11
45
2
65
88
6

output:

28
236
36
420
1
597
28
15
28
28
3
525
45
10
484
221
21
399
500
435
15
6
36
45
145
104
435
28
47
215
3
341
516
21

result:

ok 34 numbers

Test #3:

score: 0
Accepted
time: 1ms
memory: 3868kb

input:

16
935
888
429
370
499
881
285
162
178
948
205
858
573
249
773
615

output:

6009
5618
2456
2078
2905
5562
1603
887
993
6121
1174
5378
3333
1374
4724
3631

result:

ok 16 numbers

Test #4:

score: 0
Accepted
time: 2ms
memory: 3628kb

input:

12
1242
9985
6469
9310
4191
9497
3166
3495
9711
9698
4137
2257

output:

7292
63531
37910
58047
23987
59479
18076
19675
61184
61086
23672
12913

result:

ok 12 numbers

Test #5:

score: 0
Accepted
time: 2ms
memory: 3540kb

input:

10
61195
72739
10164
79164
57851
12326
29132
55992
67377
13873

output:

337575
408170
63792
450686
316513
70493
157773
305011
374163
77954

result:

ok 10 numbers

Test #6:

score: 0
Accepted
time: 3ms
memory: 3620kb

input:

8
529983
127270
421121
291729
461233
695056
365028
271160

output:

2744573
687141
2160067
1500426
2359204
3705475
1851172
1381981

result:

ok 8 numbers

Test #7:

score: 0
Accepted
time: 5ms
memory: 3788kb

input:

7
7934351
8474057
1287369
5845624
7796773
5805755
7349121

output:

42465725
45668947
6716401
30094426
41554096
29861098
38756757

result:

ok 7 numbers

Test #8:

score: 0
Accepted
time: 37ms
memory: 3552kb

input:

3
5014252832385738
8762796162648653
919997886706385

output:

892033338
297722019
462512414

result:

ok 3 number(s): "892033338 297722019 462512414"

Test #9:

score: 0
Accepted
time: 129ms
memory: 3640kb

input:

2
775701797726112292362823101
75927988177061355614

output:

371275551
566830847

result:

ok 2 number(s): "371275551 566830847"

Test #10:

score: 0
Accepted
time: 1011ms
memory: 3652kb

input:

1
65760982925996012426370962570581226245366145016666

output:

661063035

result:

ok 1 number(s): "661063035"

Test #11:

score: 0
Accepted
time: 1011ms
memory: 3752kb

input:

1
62597468169905757754175023836706426691470692832490

output:

9983261

result:

ok 1 number(s): "9983261"

Test #12:

score: 0
Accepted
time: 1017ms
memory: 3656kb

input:

1
78912847369504885593964702297317051208901751786824

output:

817123221

result:

ok 1 number(s): "817123221"

Test #13:

score: 0
Accepted
time: 1059ms
memory: 3868kb

input:

1
99999999999999999999999999999999999999999999999999

output:

25251932

result:

ok 1 number(s): "25251932"

Test #14:

score: 0
Accepted
time: 700ms
memory: 3808kb

input:

1
999999999999999999999999999999999999999999999

output:

439421821

result:

ok 1 number(s): "439421821"

Test #15:

score: 0
Accepted
time: 439ms
memory: 3644kb

input:

1
9999999999999999999999999999999999999999

output:

387537647

result:

ok 1 number(s): "387537647"

Test #16:

score: 0
Accepted
time: 1053ms
memory: 3576kb

input:

1
99999999999999999999999998889999898988888889998888

output:

909431898

result:

ok 1 number(s): "909431898"

Test #17:

score: 0
Accepted
time: 1063ms
memory: 3632kb

input:

1
99999999999999999999999998989899988889989889999888

output:

289727470

result:

ok 1 number(s): "289727470"

Test #18:

score: 0
Accepted
time: 1056ms
memory: 3532kb

input:

1
99999999999999999999999998998988898888898889898999

output:

962896416

result:

ok 1 number(s): "962896416"

Test #19:

score: 0
Accepted
time: 442ms
memory: 3584kb

input:

1
9999999999999999999989988898888989888899

output:

995903330

result:

ok 1 number(s): "995903330"

Test #20:

score: 0
Accepted
time: 439ms
memory: 3796kb

input:

1
9999999999999999999989999889889998998898

output:

385460258

result:

ok 1 number(s): "385460258"

Test #21:

score: 0
Accepted
time: 1046ms
memory: 3640kb

input:

1
99999999999999999999999999999999999999999999999999

output:

25251932

result:

ok 1 number(s): "25251932"