QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#182696 | #6673. Be Careful 2 | ucup-team004 | WA | 1ms | 3480kb | C++20 | 7.8kb | 2023-09-18 13:49:32 | 2023-09-18 13:49:33 |
Judging History
answer
#include <bits/stdc++.h>
using i64 = long long;
template<class T>
constexpr T power(T a, i64 b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
constexpr i64 mul(i64 a, i64 b, i64 p) {
i64 res = a * b - i64(1.L * a * b / p) * p;
res %= p;
if (res < 0) {
res += p;
}
return res;
}
template<i64 P>
struct MLong {
i64 x;
constexpr MLong() : x{} {}
constexpr MLong(i64 x) : x{norm(x % getMod())} {}
static i64 Mod;
constexpr static i64 getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(i64 Mod_) {
Mod = Mod_;
}
constexpr i64 norm(i64 x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr i64 val() const {
return x;
}
explicit constexpr operator i64() const {
return x;
}
constexpr MLong operator-() const {
MLong res;
res.x = norm(getMod() - x);
return res;
}
constexpr MLong inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MLong &operator*=(MLong rhs) & {
x = mul(x, rhs.x, getMod());
return *this;
}
constexpr MLong &operator+=(MLong rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MLong &operator-=(MLong rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MLong &operator/=(MLong rhs) & {
return *this *= rhs.inv();
}
friend constexpr MLong operator*(MLong lhs, MLong rhs) {
MLong res = lhs;
res *= rhs;
return res;
}
friend constexpr MLong operator+(MLong lhs, MLong rhs) {
MLong res = lhs;
res += rhs;
return res;
}
friend constexpr MLong operator-(MLong lhs, MLong rhs) {
MLong res = lhs;
res -= rhs;
return res;
}
friend constexpr MLong operator/(MLong lhs, MLong rhs) {
MLong res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
i64 v;
is >> v;
a = MLong(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
return os << a.val();
}
friend constexpr bool operator==(MLong lhs, MLong rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MLong lhs, MLong rhs) {
return lhs.val() != rhs.val();
}
};
template<>
i64 MLong<0LL>::Mod = i64(1E18) + 9;
template<int P>
struct MInt {
int x;
constexpr MInt() : x{} {}
constexpr MInt(i64 x) : x{norm(x % getMod())} {}
static int Mod;
constexpr static int getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(int Mod_) {
Mod = Mod_;
}
constexpr int norm(int x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr int val() const {
return x;
}
explicit constexpr operator int() const {
return x;
}
constexpr MInt operator-() const {
MInt res;
res.x = norm(getMod() - x);
return res;
}
constexpr MInt inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MInt &operator*=(MInt rhs) & {
x = 1LL * x * rhs.x % getMod();
return *this;
}
constexpr MInt &operator+=(MInt rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MInt &operator-=(MInt rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MInt &operator/=(MInt rhs) & {
return *this *= rhs.inv();
}
friend constexpr MInt operator*(MInt lhs, MInt rhs) {
MInt res = lhs;
res *= rhs;
return res;
}
friend constexpr MInt operator+(MInt lhs, MInt rhs) {
MInt res = lhs;
res += rhs;
return res;
}
friend constexpr MInt operator-(MInt lhs, MInt rhs) {
MInt res = lhs;
res -= rhs;
return res;
}
friend constexpr MInt operator/(MInt lhs, MInt rhs) {
MInt res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
i64 v;
is >> v;
a = MInt(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
return os << a.val();
}
friend constexpr bool operator==(MInt lhs, MInt rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MInt lhs, MInt rhs) {
return lhs.val() != rhs.val();
}
};
template<>
int MInt<0>::Mod = 998244353;
template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();
constexpr int P = 998244353;
using Z = MInt<P>;
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int n, m, k;
std::cin >> n >> m >> k;
std::vector<int> x(k), y(k);
for (int i = 0; i < k; i++) {
std::cin >> x[i] >> y[i];
if (n > m) {
std::swap(x[i], y[i]);
}
}
if (n > m) {
std::swap(n, m);
}
std::vector<int> px(k), py(k);
std::iota(px.begin(), px.end(), 0);
std::sort(px.begin(), px.end(),
[&](int i, int j) {
return x[i] < x[j];
});
std::iota(py.begin(), py.end(), 0);
std::sort(py.begin(), py.end(),
[&](int i, int j) {
return y[i] < y[j];
});
std::vector<int> qx(k), qy(k);
for (int i = 0; i < k; i++) {
qx[px[i]] = i;
qy[py[i]] = i;
}
Z ans = Z(n) * (1 + n) * (2 + n) * (Z(-4) + n + Z(3) * n * n - Z(5) * m * (1 + n)) / -60;
auto get = [&](int x1, int y1, int x2, int y2) {
Z res = 0;
int bx = std::min(x1, n - x2);
int dx = x2 - x1 + 1;
int by = std::min(y1, n - y2);
int dy = y2 - y1 + 1;
for (int d = 1; d <= n; d++) {
res += Z(d) * d * std::max(0, std::min({bx, d - dx, n + 1 - d}))
* std::max(0, std::min({by, d - dy, m + 1 - d}));
}
return res;
};
for (int i = 0; i < k; i++) {
ans -= get(x[i], y[i], x[i], y[i]);
}
for (int i = 0; i < k; i++) {
std::vector<int> l(k, -1), r(k, -1);
int lst = -1;
for (int j = 0; j < k; j++) {
if (qx[py[j]] >= i) {
if (lst != -1) {
l[py[j]] = lst;
r[lst] = py[j];
}
lst = py[j];
}
}
for (int j = k - 1; j > i; j--) {
int a = px[i], b = px[j];
int x1 = x[a], x2 = x[b];
if (qy[a] > qy[b]) {
std::swap(a, b);
}
if (r[a] == b) {
ans += get(x1, y[a], x2, y[b]);
if (l[a] != -1) {
ans -= get(x1, y[l[a]], x2, y[b]);
}
if (r[b] != -1) {
ans -= get(x1, y[a], x2, y[r[b]]);
}
if (l[a] != -1 && r[b] != -1) {
ans -= get(x1, y[l[a]], x2, y[r[b]]);
}
}
}
}
std::cout << ans << "\n";
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3472kb
input:
3 3 1 2 2
output:
21
result:
ok 1 number(s): "21"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3480kb
input:
5 5 2 2 1 2 4
output:
126
result:
ok 1 number(s): "126"
Test #3:
score: -100
Wrong Answer
time: 0ms
memory: 3444kb
input:
6 6 5 4 1 3 2 2 4 1 5 5 3
output:
998244151
result:
wrong answer 1st numbers differ - expected: '161', found: '998244151'