QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#174245#7178. Bishopsucup-team1766#WA 26ms5252kbC++231.2kb2023-09-10 05:49:432023-09-10 05:49:44

Judging History

你现在查看的是最新测评结果

  • [2023-09-10 05:49:44]
  • 评测
  • 测评结果:WA
  • 用时:26ms
  • 内存:5252kb
  • [2023-09-10 05:49:43]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

int main() {
	int n, m; cin >> n >> m;
	bool flip = false;
	if (n > m) swap(n, m), flip =true;

	long long ans = 0;
	vector<array<int,2>> print;

	int i = 0, j = m-1;
	while (j - i >= n) {
		ans += 2*n;
		for (int k = 0; k < n; k++) {
			print.push_back({k, i});
			print.push_back({k, j});
		}
		i += n;
		j -= n;
	}

	if (i == j) {
		ans += n;
		for (int k = 0; k < n; k++) {
			print.push_back({k, i});
		}
	} else if (i < j) {
		ans += n;
		for (int k = 0; k < n; k++) {
			print.push_back({k, i});
		}
		int d = m-1;
		int temp = max(0, n - 2*(n-d));
		for (int k = (n-temp)/2; k < (n+temp)/2; k++) {
			print.push_back({k, j});
		}
		ans += temp;
	} else {
		int mid = (i+j)/2;
		int d = min(mid - i + n, j + n - mid);

		int temp = max(0, n - 2 * (n - d));
		for (int k = (n-temp)/2; k < (n+temp)/2; k++) {
			print.push_back({k, mid});
		}
		ans += temp;
		if ((i+j) % 2 && n % 2) {
			ans++;
			mid++;
			while (temp > 1)
				mid++, temp--;
			print.push_back({n/2, mid});
		}
	}

	cout << ans << '\n';
	for (auto [i,j] : print) {
		if (!flip)
			cout << i+1 << ' ' << j+1 << '\n';
		else
			cout << j+1 << ' ' << i+1 << '\n';
	}
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3436kb

input:

2 5

output:

6
1 1
1 5
2 1
2 5
1 3
2 3

result:

ok n: 2, m: 5, bishops: 6

Test #2:

score: 0
Accepted
time: 1ms
memory: 3408kb

input:

5 5

output:

8
1 1
2 1
3 1
4 1
5 1
2 5
3 5
4 5

result:

ok n: 5, m: 5, bishops: 8

Test #3:

score: 0
Accepted
time: 26ms
memory: 5200kb

input:

100000 100000

output:

199998
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1
42 1
43 1
44 1
45 1
46 1
47 1
48 1
49 1
50 1
51 1
52 1
53 1
54 1
55 1
56 1
57 1
58 1
59 1
60 1
61...

result:

ok n: 100000, m: 100000, bishops: 199998

Test #4:

score: -100
Wrong Answer
time: 15ms
memory: 5252kb

input:

100000 99999

output:

199999
1 1
100000 1
1 2
100000 2
1 3
100000 3
1 4
100000 4
1 5
100000 5
1 6
100000 6
1 7
100000 7
1 8
100000 8
1 9
100000 9
1 10
100000 10
1 11
100000 11
1 12
100000 12
1 13
100000 13
1 14
100000 14
1 15
100000 15
1 16
100000 16
1 17
100000 17
1 18
100000 18
1 19
100000 19
1 20
100000 20
1 21
100000...

result:

wrong answer Sum diagonals are not distinct