QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#173607 | #7178. Bishops | ucup-team139# | WA | 20ms | 5180kb | C++23 | 1.9kb | 2023-09-10 00:33:46 | 2023-09-10 00:33:46 |
Judging History
answer
#include<bits/stdc++.h>
using namespace std;
vector<pair<int,int>> sol;
int n,m;
void check(int n,bool flg){
bool tolto=false;
if(n%2==0)n--,tolto=true;
for(int i=1;i<=n;i+=2){
sol.push_back({i+flg,1});
}
for(int i=1+(m%2==0);i<=n;i+=2){
if((i!=1 && i!=n) || n!=m){
sol.push_back({i+flg,m});
}
}
int tmp = (n+1)/2;
if(n%4==1){
int last = (m%2==1 ? m-tmp+1 : m-tmp+1+1);
if(m%2==0){
if(flg){
sol.push_back({1,m});
last=min(last,m-tmp);
}
if(tolto && n>=0){
sol.push_back({n+1,m});
last=min(last,m-tmp);
}
}
for(int i=tmp+2;i<last;i+=2){
sol.push_back({tmp+flg,i});
}
}else{
int last = (m%2==1 ? m-tmp+1 : m-tmp+1+1);
if(m%2==0){
if(flg){
sol.push_back({1,m});
last=min(last,m-tmp);
}
if(tolto && n>=0){
sol.push_back({n+1,m});
last=min(last,m-tmp);
}
}
for(int i=tmp+2;i<last;i+=2){
sol.push_back({tmp+flg,i});
}
}
}
void solve(int t){
cin>>n>>m;
bool inv = false;
if(n>m){
swap(n,m);
inv=true;
}
check(n,false);
check(n-1,true);
//assert(sol.size()==n+m-1 || n==m);
cout<<sol.size()<<"\n";
for(auto [x,y] : sol){
if(inv)swap(x,y);
cout<<x<<" "<<y<<"\n";
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int t=1;
//cin>>t;
for(int i=1;i<=t;i++)solve(i);
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3604kb
input:
2 5
output:
6 1 1 1 5 1 3 2 1 2 5 2 3
result:
ok n: 2, m: 5, bishops: 6
Test #2:
score: 0
Accepted
time: 1ms
memory: 3656kb
input:
5 5
output:
8 1 1 3 1 5 1 3 5 2 1 4 1 2 5 4 5
result:
ok n: 5, m: 5, bishops: 8
Test #3:
score: -100
Wrong Answer
time: 20ms
memory: 5180kb
input:
100000 100000
output:
200000 1 1 3 1 5 1 7 1 9 1 11 1 13 1 15 1 17 1 19 1 21 1 23 1 25 1 27 1 29 1 31 1 33 1 35 1 37 1 39 1 41 1 43 1 45 1 47 1 49 1 51 1 53 1 55 1 57 1 59 1 61 1 63 1 65 1 67 1 69 1 71 1 73 1 75 1 77 1 79 1 81 1 83 1 85 1 87 1 89 1 91 1 93 1 95 1 97 1 99 1 101 1 103 1 105 1 107 1 109 1 111 1 113 1 115 1 ...
result:
wrong answer Sum diagonals are not distinct