QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#168784 | #6304. Rectangle | ExplodingKonjac | RE | 2811ms | 47632kb | C++17 | 11.5kb | 2023-09-08 21:57:34 | 2023-09-08 21:57:35 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
#define OPENIOBUF
namespace FastIO
{
class FastIOBase
{
protected:
#ifdef OPENIOBUF
static const int BUFSIZE=1<<16;
char buf[BUFSIZE+1];
int buf_p=0;
#endif
FILE *target;
FastIOBase(FILE *f): target(f){}
~FastIOBase()=default;
public:
#ifdef OPENIOBUF
virtual void flush()=0;
#endif
};
class FastOutput final: public FastIOBase
{
private:
void __putc(char x)
{
#ifdef OPENIOBUF
if(buf[buf_p++]=x,buf_p==BUFSIZE) flush();
#else
putc(x,target);
#endif
}
template<typename T>
void __write(T x)
{
char stk[64],*top=stk;
if(x<0) return __putc('-'),__write(-x);
do *(top++)=x%10,x/=10; while(x);
for(;top!=stk;__putc(*(--top)+'0'));
}
public:
FastOutput(FILE *f=stdout): FastIOBase(f) {}
#ifdef OPENIOBUF
~FastOutput() { flush(); }
void flush() { fwrite(buf,1,buf_p,target),buf_p=0; }
#endif
FastOutput &operator <<(char x)
{ return __putc(x),*this; }
FastOutput &operator <<(const char *s)
{ for(;*s;__putc(*(s++)));return *this; }
FastOutput &operator <<(const std::string &s)
{ return (*this)<<s.c_str(); }
template<typename T>
std::enable_if_t<std::is_integral<T>::value,FastOutput&> operator <<(const T &x)
{ return __write(x),*this; }
template<typename ...T>
void writesp(const T &...x)
{ std::initializer_list<int>{(this->operator<<(x),__putc(' '),0)...}; }
template<typename ...T>
void writeln(const T &...x)
{ std::initializer_list<int>{(this->operator<<(x),__putc('\n'),0)...}; }
template<typename Iter>
void writesp(Iter begin,Iter end)
{ while(begin!=end) (*this)<<*(begin++)<<' '; }
template<typename Iter>
void writeln(Iter begin,Iter end)
{ while(begin!=end) (*this)<<*(begin++)<<'\n'; }
}qout;
class FastInput final: public FastIOBase
{
private:
bool __eof;
public:
FastInput(FILE *f=stdin): FastIOBase(f),__eof(false)
#ifdef OPENIOBUF
{ buf_p=BUFSIZE; }
void flush() { buf[fread(buf,1,BUFSIZE,target)]=EOF,buf_p=0; }
bool eof()const { return buf[buf_p]==EOF; }
#else
{}
bool eof()const { return feof(target); }
#endif
char get()
{
if(__eof) return EOF;
#ifdef OPENIOBUF
if(buf_p==BUFSIZE) flush();
char ch=buf[buf_p++];
#else
char ch=getc(target);
#endif
return ~ch?ch:(__eof=true,EOF);
}
void unget(char c)
{
__eof=false;
#ifdef OPENIOBUF
buf_p--;
#else
ungetc(c,target);
#endif
}
explicit operator bool()const { return !__eof; }
FastInput &operator >>(char &x)
{ while(isspace(x=get()));return *this; }
template<typename T>
std::enable_if_t<std::is_integral<T>::value,FastInput&> operator >>(T &x)
{
char ch,sym=0;x=0;
while(isspace(ch=get()));
if(__eof) return *this;
if(ch=='-') sym=1,ch=get();
for(;isdigit(ch);x=(x<<1)+(x<<3)+(ch^48),ch=get());
return unget(ch),sym?x=-x:x,*this;
}
FastInput &operator >>(char *s)
{
while(isspace(*s=get()));
if(__eof) return *this;
for(;!isspace(*s) && !__eof;*(++s)=get());
return unget(*s),*s='\0',*this;
}
FastInput &operator >>(std::string &s)
{
char str_buf[(1<<8)+1]={0},*p=str_buf;
char *const buf_end=str_buf+(1<<8);
while(isspace(*p=get()));
if(__eof) return *this;
for(s.clear(),p++;;p=str_buf)
{
for(;p!=buf_end && !isspace(*p=get()) && !__eof;p++);
if(p!=buf_end) break;
s.append(str_buf);
}
unget(*p),*p='\0',s.append(str_buf);
return *this;
}
template<typename ...T>
void read(T &...x)
{ std::initializer_list<int>{(this->operator>>(x),0)...}; }
template<typename Iter>
void read(Iter begin,Iter end)
{ while(begin!=end) (*this)>>*(begin++); }
}qin;
} // namespace FastIO
using FastIO::qin,FastIO::qout;
using LL=long long;
using LD=long double;
using UI=unsigned int;
using ULL=unsigned long long;
constexpr int INF=1e9;
#ifndef DADALZY
#define FILEIO(file) freopen(file".in","r",stdin),freopen(file".out","w",stdout)
#define LOG(...) void()
#else
#define FILEIO(file)
#define LOG(...) fprintf(stderr,__VA_ARGS__)
#endif
namespace Math
{
template<typename Derived>
class ModintBase
{
protected:
int val;
private:
template<typename T>
constexpr enable_if_t<is_integral<T>::value,T> __inv(T a,T b)const
{ T x=0,y=1,t=0;for(;a;t=b/a,std::swap(a,b-=t*a),std::swap(y,x-=t*y));return x; }
template<typename T>
constexpr enable_if_t<is_integral<T>::value,T> __fix(T x)const
{ return static_cast<const Derived*>(this)->fix(x); }
constexpr static ModintBase __unfixed(int x)
{ return reinterpret_cast<ModintBase&>(x); }
#define DEF_OP1(op) \
friend constexpr ModintBase operator op(const ModintBase &lhs,const ModintBase &rhs)\
{ return ModintBase(lhs)op##=rhs; }\
ModintBase &operator op##=(const ModintBase &rhs)
#define DEF_OP2(op) \
constexpr ModintBase operator op(int)\
{ ModintBase res(*this);return op(*this),res; }\
constexpr ModintBase &operator op()
#define DEF_OP3(op) \
constexpr ModintBase operator op()const
#define DEF_OP4(op) \
friend constexpr bool operator op(const ModintBase &lhs,const ModintBase &rhs) \
{ return lhs.val op rhs.val; }
#define MOD static_cast<const Derived*>(this)->getMod()
public:
constexpr ModintBase(): val(0) {}
template<typename T>
constexpr ModintBase(const T &x): val(__fix(x)) {}
constexpr int operator ()()const { return val; }
DEF_OP1(+) { return (val+=rhs.val)>=MOD?val-=MOD:0,*this; }
DEF_OP1(-) { return (val-=rhs.val)<0?val+=MOD:0,*this; }
DEF_OP1(*) { return val=__fix(1ll*val*rhs.val),*this; }
DEF_OP1(/) { return val=__fix(1ll*val*__inv(rhs.val,MOD)),*this; }
DEF_OP2(++) { return (++val)>=MOD?val-=MOD:0,*this; }
DEF_OP2(--) { return (--val)<0?val+=MOD:0,*this; }
DEF_OP3(+) { return *this; }
DEF_OP3(-) { return __unfixed(val?MOD-val:0); }
DEF_OP4(==) DEF_OP4(!=) DEF_OP4(<) DEF_OP4(>) DEF_OP4(<=) DEF_OP4(>=)
constexpr ModintBase inv()const
{ return ModintBase(__inv(val,MOD)); }
template<typename T>
friend inline constexpr enable_if_t<is_integral<T>::value,Derived> qpow(Derived x,T y)
{ Derived res(1);for(;y;x*=x,y>>=1)if(y&1)res*=x;return res; }
#undef DEF_OP1
#undef DEF_OP2
#undef DEF_OP3
#undef DEF_OP4
#undef MOD
};
class FastMod
{
private:
using ULL=uint64_t;
using U128=__uint128_t;
ULL p,m;
public:
constexpr FastMod(): p(0),m(0) {}
constexpr FastMod(ULL p): p(p),m((U128(1)<<64)/p) {}
constexpr ULL getp()const { return p; }
constexpr ULL operator()(ULL a)const
{ ULL q=(U128(m)*a)>>64,r=a-q*p;return r>=p?r-p:r; }
};
// Modint for dynamic MOD
class DModint: public ModintBase<DModint>
{
private:
using BaseT=ModintBase<DModint>;
static FastMod R;
friend BaseT;
template<typename T> static constexpr T fix(T x)
{ return x<0?R.getp()-R(-x):R(x); }
public:
template<typename ...T>
constexpr DModint(T ...x): BaseT(x...){}
static constexpr void setMod(int mod) { R=FastMod(mod); }
static constexpr int getMod() { return R.getp(); }
};
FastMod DModint::R{};
// Modint for static MOD
template<int MOD>
class SModint: public ModintBase<SModint<MOD>>
{
private:
using BaseT=ModintBase<SModint<MOD>>;
friend BaseT;
template<typename T> static constexpr T fix(T x)
{ return (x%=MOD)<0?x+MOD:x; }
public:
template<typename ...T>
constexpr SModint(T ...x): BaseT(x...) {}
static constexpr int getMod() { return MOD; }
};
} // namespace Math
constexpr int MOD=998244353;
using Mint=Math::SModint<MOD>;
int T,n;
struct Rect{ int lx,rx,ly,ry; }a[100005];
int nx,ny,lshx[200005],lshy[200005];
inline int getx(int x)
{ return lower_bound(lshx+1,lshx+nx+1,x)-lshx; }
inline int gety(int y)
{ return lower_bound(lshy+1,lshy+ny+1,y)-lshy; }
inline Mint C2(Mint x)
{ return x*(x-1)/2; }
inline Mint C3(Mint x)
{ return x*(x-1)*(x-2)/6; }
struct TreeNode{ int mn;Mint sum; }t[800005];
#define LC (i<<1)
#define RC (i<<1|1)
void build(int l,int r,int i=1)
{
t[i].mn=INF;
t[i].sum=t[i].mn*Mint(lshy[r+1]-lshy[l]);
if(l==r) return;
int mid=(l+r)>>1;
build(l,mid,LC),build(mid+1,r,RC);
}
Mint calc(int mn,int i,int l,int r)
{
if(l==r) return min(mn,t[i].mn)*Mint(lshy[r+1]-lshy[l]);
int mid=(l+r)>>1;
if(mn<=t[RC].mn) return calc(mn,LC,l,mid)+mn*Mint(lshy[r+1]-lshy[mid+1]);
else return t[i].sum+calc(mn,RC,mid+1,r);
}
void modify(int p,int x,int i=1,int l=1,int r=ny-1)
{
if(l==r) return t[i].mn=x,void();
int mid=(l+r)>>1;
if(mid>=p) modify(p,x,LC,l,mid);
else modify(p,x,RC,mid+1,r);
t[i].mn=min(t[LC].mn,t[RC].mn);
t[i].sum=calc(t[RC].mn,LC,l,mid);
}
Mint query(int lim,int rq)
{
int cur=INF;
Mint res;
auto work=[&](auto &self,int i,int l,int r)
{
if(cur<lim) return;
if(r<=rq && min(cur,t[i].mn)>=lim)
{
res+=calc(cur,i,l,r)-Mint(lshy[r+1]-lshy[l])*(lim-1);
cur=min(cur,t[i].mn);
return;
}
if(l>rq || l==r)
return cur=min(cur,t[i].mn),void();
int mid=(l+r)>>1;
self(self,RC,mid+1,r);
self(self,LC,l,mid);
};
work(work,1,1,ny-1);
return res;
}
int ord1[100005],ord2[100005];
int llen[100005],rlen[100005];
multiset<int> mxl,mnr,ss[200005];
Mint subsolve1()
{
int liml=nx,limr=0;
for(int i=1,l=1,r=INF,j=1;i<nx;i++)
{
while(j<=n && a[ord2[j]].rx<lshx[i])
{
l=max(l,a[ord2[j]].lx);
r=min(r,a[ord2[j]].rx);
j++;
}
if(l>r) { liml=i;break; }
llen[i]=(j>1?r-l+1:0);
}
for(int i=nx,l=1,r=INF,j=n;i>1;i--)
{
while(j>=1 && a[ord1[j]].lx>=lshx[i])
{
l=max(l,a[ord1[j]].lx);
r=min(r,a[ord1[j]].rx);
j--;
}
if(l>r) { limr=i-1;break; }
rlen[i-1]=(j<n?r-l+1:0);
}
Mint res;
for(int i=1;i<nx;i++)
{
if(i>=liml || i<=limr) continue;
Mint len=lshx[i+1]-lshx[i],ld=lshx[i]-1,rd=INF-lshx[i+1]+1;
if(llen[i] && rlen[i]) res+=len*llen[i]*rlen[i];
else if(llen[i]) res+=llen[i]*C2(len)+rd*llen[i]*len;
else if(rlen[i]) res+=rlen[i]*C2(len)+ld*rlen[i]*len;
else res+=ld*rd*len+C2(len)*(ld+rd)+C3(len);
}
return res;
}
Mint subsolve2()
{
mxl=multiset{1};
mnr=multiset{INF};
for(int i=1;i<ny;i++) ss[i]=multiset{INF};
build(1,ny-1);
auto add=[&](int l,int r)
{
int p=gety(l)-1;
mxl.insert(l);
mnr.insert(r);
ss[p].insert(r);
if(p>=1) modify(p,*ss[p].begin());
};
auto del=[&](int l,int r)
{
int p=gety(l)-1;
mxl.erase(mxl.find(l));
mnr.erase(mnr.find(r));
ss[p].erase(ss[p].find(r));
if(p>=1) modify(p,*ss[p].begin());
};
for(int i=1;i<=n;i++) add(a[i].ly,a[i].ry);
Mint res;
for(int i=1,j1=1,j2=1;i<nx;i++)
{
while(j1<=n && a[ord1[j1]].lx<lshx[i+1])
del(a[ord1[j1]].ly,a[ord1[j1]].ry),j1++;
while(j2<=n && a[ord2[j2]].rx<lshx[i])
add(a[ord2[j2]].ly,a[ord2[j2]].ry),j2++;
int l=*mxl.rbegin(),r=*mnr.begin(),len=lshx[i+1]-lshx[i];
res+=len*query(l,gety(r+1)-1);
if(l<=r) res-=len*((r-l+1)+C2(r-l+1));
}
return res;
}
Mint solve()
{
nx=2,lshx[1]=1,lshx[2]=INF+1;
ny=2,lshy[1]=1,lshy[2]=INF+1;
for(int i=1;i<=n;i++)
{
lshx[++nx]=a[i].lx,lshx[++nx]=a[i].rx+1;
lshy[++ny]=a[i].ly,lshy[++ny]=a[i].ry+1;
}
sort(lshx+1,lshx+nx+1);
sort(lshy+1,lshy+ny+1);
nx=unique(lshx+1,lshx+nx+1)-lshx-1;
ny=unique(lshy+1,lshy+ny+1)-lshy-1;
iota(ord1+1,ord1+n+1,1);
iota(ord2+1,ord2+n+1,1);
sort(ord1+1,ord1+n+1,[](int x,int y){ return a[x].lx<a[y].lx; });
sort(ord2+1,ord2+n+1,[](int x,int y){ return a[x].rx<a[y].rx; });
Mint res;
res+=subsolve1();
res+=subsolve2();
return res;
}
int main()
{
qin>>T;
while(T--)
{
qin>>n;
for(int i=1;i<=n;i++)
qin>>a[i].lx>>a[i].ly>>a[i].rx>>a[i].ry;
Mint ans;
ans+=solve();
for(int i=1;i<=n;i++)
swap(a[i].lx,a[i].ly),swap(a[i].rx,a[i].ry);
ans+=solve();
qout<<ans()<<'\n';
}
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 22448kb
input:
3 1 1 1 1000000000 1000000000 3 1 1 2 2 3 3 4 4 5 5 6 6 5 581574116 47617804 999010750 826131769 223840663 366320907 613364068 926991396 267630832 51913575 488301124 223957497 217461197 492085159 999485867 913732845 28144453 603781668 912516656 993160442
output:
230616300 64 977066618
result:
ok 3 number(s): "230616300 64 977066618"
Test #2:
score: 0
Accepted
time: 25ms
memory: 24056kb
input:
1000 10 5 7 6 10 4 3 6 9 1 6 3 7 1 1 7 10 1 2 7 7 5 2 8 3 2 1 5 7 1 1 10 6 1 7 2 8 4 7 5 9 10 6 6 8 10 4 4 9 9 2 4 6 5 5 3 10 10 1 3 4 4 2 2 3 6 7 5 8 6 2 7 8 8 5 7 10 10 2 4 7 8 10 3 6 6 10 1 2 7 4 7 5 10 9 4 5 8 9 2 7 5 9 2 2 9 7 3 3 8 4 1 1 8 6 5 4 10 6 3 9 7 10 10 3 1 8 9 1 3 8 10 4 1 7 4 2 4 5 ...
output:
28090346 21067815 91293528 63203269 14045217 24579047 49158123 56180656 10533942 83 28090372 101827338 512901428 38624242 10533932 42135595 7022614 7022661 7022622 31601641 21067817 35112979 7022628 7022682 17556485 42135554 59692019 28090452 14045202 73737099 42135505 31601703 49158091 28090434 108...
result:
ok 1000 numbers
Test #3:
score: 0
Accepted
time: 20ms
memory: 23892kb
input:
1000 10 56 6 85 86 2 67 79 76 41 32 57 94 7 24 95 72 4 82 98 99 21 16 64 95 5 15 97 50 75 34 93 63 65 1 74 40 62 50 91 57 10 1 66 4 99 73 28 80 35 9 46 84 72 57 12 74 75 24 20 72 86 30 35 51 52 20 32 80 48 1 27 38 38 79 30 91 86 49 11 78 31 10 84 36 95 84 18 76 83 96 87 6 97 24 59 74 79 81 36 6 49 1...
output:
286940182 6719 3879 10985 284425706 1482 154507014 337096188 15634 15198 13957 311811545 2065 487051821 104322525 4160 6232 3566 259869863 676660625 533734216 1108 210694302 941064564 9524057 366655439 960 712817222 294969344 505637269 5277 216 807601960 6489 192 252834684 9863 523061934 1036 370 16...
result:
ok 1000 numbers
Test #4:
score: 0
Accepted
time: 20ms
memory: 23028kb
input:
1000 10 151949335 343818689 226887829 843487881 26268786 629172470 727820988 753588469 239557045 129989050 828912527 803511337 216216272 737211068 952614934 901139965 9412307 270208240 969836975 781270622 210767204 691143582 734743967 978765608 115072779 149374200 365237395 723260248 373039270 50881...
output:
989992685 889170389 199600526 811602467 101647877 422274637 988817681 775346897 987827054 201664770 0 425324155 654779513 129937888 504567840 567363794 953468940 390846625 863893486 832900735 549488122 626520957 651708706 325695215 265584217 535054615 654784437 835844534 970196650 259827660 73563096...
result:
ok 1000 numbers
Test #5:
score: 0
Accepted
time: 423ms
memory: 23024kb
input:
20000 10 387518709 362080654 857718988 413892967 259574026 383071239 349422952 406322216 252781835 421214199 960954668 766986966 709548059 152868851 829506776 286195984 533564379 238783143 835360470 804665480 37715197 439312193 350269160 510361284 760325088 379134217 996444460 640572941 75706031 242...
output:
425031005 145199488 76594243 608094392 105901554 767793557 925027675 718008576 542146803 257776847 83948409 557131094 957234323 316994452 711146361 878596101 863265391 86278462 882556696 943381219 171834801 312110039 509815322 995001589 267270543 321796762 646607323 535110629 612892338 264981338 862...
result:
ok 20000 numbers
Test #6:
score: 0
Accepted
time: 415ms
memory: 23668kb
input:
20000 9 23397362 5465077 922916650 905326448 334129892 259574026 806023297 349422952 85390000 14589070 252781835 159363469 518493829 9904109 881263301 763351170 376515120 592421912 709548059 922381128 522936 888125869 919020884 968891551 192627293 528719402 238783143 846674462 269993278 155196111 41...
output:
38446691 441652008 80634077 86958519 313123987 37147655 292453230 135822548 347213034 875178269 572593450 121333363 910761745 288628833 144542647 336001702 492148086 504465362 307137735 40715447 936972207 895075762 698856636 442121431 960601688 728799681 619152060 51416671 586371383 183976942 996194...
result:
ok 20000 numbers
Test #7:
score: 0
Accepted
time: 604ms
memory: 22792kb
input:
2000 98 441828066 355550044 980140398 758338808 139187839 379489833 732496729 915149220 6198442 7406064 811667085 671521385 634108502 54340068 750182168 712125681 51518185 164417838 414217749 690302726 26971686 349814847 96913121 613904116 18885592 344395345 969337141 761958781 6500321 288362602 695...
output:
847505316 69861689 762022665 942187496 610542723 297361682 408287130 37288980 129194998 781348133 138625309 885806848 596340815 251557403 136654463 415973838 348935020 217451841 607735223 183258123 453186006 29511771 486730947 90933161 744360742 932334149 464917933 58351031 36268611 777434481 348682...
result:
ok 2000 numbers
Test #8:
score: 0
Accepted
time: 882ms
memory: 23508kb
input:
200 993 336152525 31049117 970839548 34483370 257968529 73378100 760295564 459870661 769587893 565770848 979251259 884779692 92706327 715631888 976631772 730467480 102936760 674056008 996888200 756831534 141490448 466112222 761954523 960644829 601216664 500053814 974949771 928192751 298296452 359164...
output:
163043779 101789580 214159985 605122084 222495872 595662571 919415389 27790333 940923361 745272650 432367810 269413997 881525570 275197159 128519736 759744770 394059985 858394070 885939030 507707772 380648232 853123251 659897376 142847962 866652391 78179639 672081467 655879491 267275050 880872481 74...
result:
ok 200 numbers
Test #9:
score: 0
Accepted
time: 425ms
memory: 27648kb
input:
200 989 1 8 5 9 6 4 9 7 9 4 10 10 3 3 8 7 7 1 9 5 9 4 10 6 4 3 7 8 3 1 7 4 2 5 3 6 3 4 4 7 4 3 7 9 1 2 9 8 4 3 6 4 2 2 6 10 6 8 7 10 2 1 3 9 1 1 4 10 1 5 4 8 2 3 4 9 4 3 9 9 1 2 6 7 7 4 9 5 4 3 8 10 4 1 8 10 7 2 8 5 2 4 3 8 5 4 10 6 9 1 10 5 5 3 7 7 6 4 10 10 6 6 7 9 1 1 3 10 2 2 9 8 2 3 7 8 3 9 10 ...
output:
3 1 2 1 2 1 2 3511294 1 3511294 2 2 3511295 3 2 2 6 1 2 1 1 3 1 3511294 1 1 10533874 1 1 1 2 2 1 6 432141794 1 1 2 4 1 3511294 2 3511294 3 3 1 2 1 853749714 3 3 7022585 3511294 2 2 3 7022585 3 14045164 1 2 1 1 1 4 2 4 3511295 3 3 3511295 3511295 7022585 1 2 1 3 2 1 7022585 2 2 2 3 2 7022585 2 4 3 2 ...
result:
ok 200 numbers
Test #10:
score: 0
Accepted
time: 591ms
memory: 25104kb
input:
200 993 5 48 42 78 55 33 66 92 6 5 38 34 38 34 82 48 9 76 34 86 50 39 72 44 46 54 96 82 4 13 68 24 39 25 93 56 36 53 98 86 19 10 73 24 54 27 97 84 34 21 93 76 44 7 70 89 63 73 97 98 50 24 94 35 8 30 98 67 3 15 81 67 39 9 78 24 8 65 100 98 13 5 86 33 54 67 99 84 3 2 43 4 53 51 70 86 1 61 61 90 46 78 ...
output:
1 1 2 1 2 3 2 1 2 1 1 1 1 1 2 2 1 2 2 17 1 3 1 10 1 2 2 1 1 81 15 1 170 1 4 1 2 1 1 2 1 2 1 2 1 1 4 1 2 1 2 1 1 1 1 2 3511413 1 2 1 2 2 7022597 1 2 2 2 2 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 3 2 4 1 2 3 1 6 1 1 1 2 1 1 1 1 2 10 6 5 1 1 1 1 1 1 2 10 6 2 4 3 3511332 2 2 1 1 1 4 1 2 1 2 1 5 7 6 1 1 2 1 1 1 1 ...
result:
ok 200 numbers
Test #11:
score: 0
Accepted
time: 1428ms
memory: 24980kb
input:
20 9956 444627993 347200064 774678572 839098978 96936514 121569633 839637347 729127099 343857875 554213034 875416430 628610537 15566043 187047055 405963021 764745923 487340755 59747358 604299543 832826844 486772462 67273090 826002755 268527861 703758831 112254125 887710074 874858855 569284980 830139...
output:
723891885 824191538 424987081 659035365 778857924 125675099 919713447 291966121 841813 399938856 822967409 178787426 958377822 295302425 835192235 569958073 114037901 814150865 893384876 929070768
result:
ok 20 numbers
Test #12:
score: 0
Accepted
time: 2811ms
memory: 47412kb
input:
2 99774 247800693 19906287 955213467 53123614 752909581 205074868 772413424 686934334 565298662 150234672 941079197 750300220 29485217 794172007 678447605 874228231 524081254 14156413 775198532 256753797 121163010 271762780 489047491 996802646 61272893 135510320 459683721 975698463 37577668 16804082...
output:
272047384 165799897
result:
ok 2 number(s): "272047384 165799897"
Test #13:
score: 0
Accepted
time: 2647ms
memory: 47632kb
input:
2 99484 80367959 446700298 316938043 713030699 180389 97354205 991264982 207371172 227833166 343626198 994287807 999074121 223486533 274166047 762438540 996451527 139307586 443291005 936748272 801084030 368603416 246191750 992851831 575339592 136221208 723918872 407787921 838545617 455487191 6275486...
output:
802453384 719182239
result:
ok 2 number(s): "802453384 719182239"
Test #14:
score: 0
Accepted
time: 2618ms
memory: 47360kb
input:
2 99702 94595645 404782179 993272416 799556541 245960576 714158438 987938798 821638563 327691314 213461603 998000552 819971477 908733781 18331290 994253841 385477664 28676928 357826789 998470667 719588896 710572487 806027973 975068392 829637377 822675537 183304736 991051351 955945560 469997956 65270...
output:
652843490 385598972
result:
ok 2 number(s): "652843490 385598972"
Test #15:
score: 0
Accepted
time: 2799ms
memory: 47340kb
input:
2 99412 198128938 38044404 520528603 69633461 296156091 253862054 879892175 422416582 113833513 497466407 912643387 778378206 852447189 420378642 973727926 802939446 34007282 574929361 774903967 607765114 349114758 378613356 379719307 996737934 263835095 266671229 866002851 601998719 429266410 68169...
output:
399712945 504439560
result:
ok 2 number(s): "399712945 504439560"
Test #16:
score: -100
Runtime Error
input:
2 99774 75930961 154072381 847971169 627055843 244525147 409278367 925944938 528328481 129723553 183994451 964033785 826775854 68114505 152036158 731700382 837809150 53123614 32632966 910136942 528684484 252909581 230872854 640150186 541470159 486420648 319619359 641792851 842591283 120182438 144662...