QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#165116#7187. Hardcore String Countingucup-team004#AC ✓2921ms11620kbC++2013.9kb2023-09-05 16:06:122023-09-05 16:06:12

Judging History

你现在查看的是最新测评结果

  • [2023-09-05 16:06:12]
  • 评测
  • 测评结果:AC
  • 用时:2921ms
  • 内存:11620kb
  • [2023-09-05 16:06:12]
  • 提交

answer

#include <bits/stdc++.h>

using i64 = long long;
template<class T>
constexpr T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}

template<int P>
struct MInt {
    int x;
    constexpr MInt() : x{} {}
    constexpr MInt(i64 x) : x{norm(x % getMod())} {}
    
    static int Mod;
    constexpr static int getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(int Mod_) {
        Mod = Mod_;
    }
    constexpr int norm(int x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr int val() const {
        return x;
    }
    explicit constexpr operator int() const {
        return x;
    }
    constexpr MInt operator-() const {
        MInt res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MInt inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MInt &operator*=(MInt rhs) & {
        x = 1LL * x * rhs.x % getMod();
        return *this;
    }
    constexpr MInt &operator+=(MInt rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MInt &operator-=(MInt rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MInt &operator/=(MInt rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MInt operator*(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MInt operator+(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MInt operator-(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MInt operator/(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
        i64 v;
        is >> v;
        a = MInt(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MInt lhs, MInt rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MInt lhs, MInt rhs) {
        return lhs.val() != rhs.val();
    }
};

template<>
int MInt<0>::Mod = 1;

template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();

constexpr int P = 998244353;
using Z = MInt<P>;

std::vector<int> rev;
template<int P>
std::vector<MInt<P>> roots{0, 1};

template<int P>
constexpr MInt<P> findPrimitiveRoot() {
    MInt<P> i = 2;
    int k = __builtin_ctz(P - 1);
    while (true) {
        if (power(i, (P - 1) / 2) != 1) {
            break;
        }
        i += 1;
    }
    return power(i, (P - 1) >> k);
}

template<int P>
constexpr MInt<P> primitiveRoot = findPrimitiveRoot<P>();

template<>
constexpr MInt<998244353> primitiveRoot<998244353> {31};

template<int P>
constexpr void dft(std::vector<MInt<P>> &a) {
    int n = a.size();
    
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
        }
    }
    
    for (int i = 0; i < n; i++) {
        if (rev[i] < i) {
            std::swap(a[i], a[rev[i]]);
        }
    }
    if (roots<P>.size() < n) {
        int k = __builtin_ctz(roots<P>.size());
        roots<P>.resize(n);
        while ((1 << k) < n) {
            auto e = power(primitiveRoot<P>, 1 << (__builtin_ctz(P - 1) - k - 1));
            for (int i = 1 << (k - 1); i < (1 << k); i++) {
                roots<P>[2 * i] = roots<P>[i];
                roots<P>[2 * i + 1] = roots<P>[i] * e;
            }
            k++;
        }
    }
    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; j++) {
                MInt<P> u = a[i + j];
                MInt<P> v = a[i + j + k] * roots<P>[k + j];
                a[i + j] = u + v;
                a[i + j + k] = u - v;
            }
        }
    }
}

template<int P>
constexpr void idft(std::vector<MInt<P>> &a) {
    int n = a.size();
    std::reverse(a.begin() + 1, a.end());
    dft(a);
    MInt<P> inv = (1 - P) / n;
    for (int i = 0; i < n; i++) {
        a[i] *= inv;
    }
}

template<int P = 998244353>
struct Poly : public std::vector<MInt<P>> {
    using Value = MInt<P>;
    
    Poly() : std::vector<Value>() {}
    explicit constexpr Poly(int n) : std::vector<Value>(n) {}
    
    explicit constexpr Poly(const std::vector<Value> &a) : std::vector<Value>(a) {}
    constexpr Poly(const std::initializer_list<Value> &a) : std::vector<Value>(a) {}
    
    template<class InputIt, class = std::_RequireInputIter<InputIt>>
    explicit constexpr Poly(InputIt first, InputIt last) : std::vector<Value>(first, last) {}
    
    template<class F>
    explicit constexpr Poly(int n, F f) : std::vector<Value>(n) {
        for (int i = 0; i < n; i++) {
            (*this)[i] = f(i);
        }
    }
    
    constexpr Poly shift(int k) const {
        if (k >= 0) {
            auto b = *this;
            b.insert(b.begin(), k, 0);
            return b;
        } else if (this->size() <= -k) {
            return Poly();
        } else {
            return Poly(this->begin() + (-k), this->end());
        }
    }
    constexpr Poly trunc(int k) const {
        Poly f = *this;
        f.resize(k);
        return f;
    }
    constexpr friend Poly operator+(const Poly &a, const Poly &b) {
        Poly res(std::max(a.size(), b.size()));
        for (int i = 0; i < a.size(); i++) {
            res[i] += a[i];
        }
        for (int i = 0; i < b.size(); i++) {
            res[i] += b[i];
        }
        return res;
    }
    constexpr friend Poly operator-(const Poly &a, const Poly &b) {
        Poly res(std::max(a.size(), b.size()));
        for (int i = 0; i < a.size(); i++) {
            res[i] += a[i];
        }
        for (int i = 0; i < b.size(); i++) {
            res[i] -= b[i];
        }
        return res;
    }
    constexpr friend Poly operator-(const Poly &a) {
        std::vector<Value> res(a.size());
        for (int i = 0; i < int(res.size()); i++) {
            res[i] = -a[i];
        }
        return Poly(res);
    }
    constexpr friend Poly operator*(Poly a, Poly b) {
        if (a.size() == 0 || b.size() == 0) {
            return Poly();
        }
        if (a.size() < b.size()) {
            std::swap(a, b);
        }
        int n = 1, tot = a.size() + b.size() - 1;
        while (n < tot) {
            n *= 2;
        }
        if (((P - 1) & (n - 1)) != 0 || b.size() < 128) {
            Poly c(a.size() + b.size() - 1);
            for (int i = 0; i < a.size(); i++) {
                for (int j = 0; j < b.size(); j++) {
                    c[i + j] += a[i] * b[j];
                }
            }
            return c;
        }
        a.resize(n);
        b.resize(n);
        dft(a);
        dft(b);
        for (int i = 0; i < n; ++i) {
            a[i] *= b[i];
        }
        idft(a);
        a.resize(tot);
        return a;
    }
    constexpr friend Poly operator*(Value a, Poly b) {
        for (int i = 0; i < int(b.size()); i++) {
            b[i] *= a;
        }
        return b;
    }
    constexpr friend Poly operator*(Poly a, Value b) {
        for (int i = 0; i < int(a.size()); i++) {
            a[i] *= b;
        }
        return a;
    }
    constexpr friend Poly operator/(Poly a, Value b) {
        for (int i = 0; i < int(a.size()); i++) {
            a[i] /= b;
        }
        return a;
    }
    constexpr Poly &operator+=(Poly b) {
        return (*this) = (*this) + b;
    }
    constexpr Poly &operator-=(Poly b) {
        return (*this) = (*this) - b;
    }
    constexpr Poly &operator*=(Poly b) {
        return (*this) = (*this) * b;
    }
    constexpr Poly &operator*=(Value b) {
        return (*this) = (*this) * b;
    }
    constexpr Poly &operator/=(Value b) {
        return (*this) = (*this) / b;
    }
    constexpr Poly deriv() const {
        if (this->empty()) {
            return Poly();
        }
        Poly res(this->size() - 1);
        for (int i = 0; i < this->size() - 1; ++i) {
            res[i] = (i + 1) * (*this)[i + 1];
        }
        return res;
    }
    constexpr Poly integr() const {
        Poly res(this->size() + 1);
        for (int i = 0; i < this->size(); ++i) {
            res[i + 1] = (*this)[i] / (i + 1);
        }
        return res;
    }
    constexpr Poly inv(int m) const {
        Poly x{(*this)[0].inv()};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{2} - trunc(k) * x)).trunc(k);
        }
        return x.trunc(m);
    }
    constexpr Poly log(int m) const {
        return (deriv() * inv(m)).integr().trunc(m);
    }
    constexpr Poly exp(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{1} - x.log(k) + trunc(k))).trunc(k);
        }
        return x.trunc(m);
    }
    constexpr Poly pow(int k, int m) const {
        int i = 0;
        while (i < this->size() && (*this)[i] == 0) {
            i++;
        }
        if (i == this->size() || 1LL * i * k >= m) {
            return Poly(m);
        }
        Value v = (*this)[i];
        auto f = shift(-i) * v.inv();
        return (f.log(m - i * k) * k).exp(m - i * k).shift(i * k) * power(v, k);
    }
    constexpr Poly sqrt(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x + (trunc(k) * x.inv(k)).trunc(k)) * CInv<2, P>;
        }
        return x.trunc(m);
    }
    constexpr Poly mulT(Poly b) const {
        if (b.size() == 0) {
            return Poly();
        }
        int n = b.size();
        std::reverse(b.begin(), b.end());
        return ((*this) * b).shift(-(n - 1));
    }
    constexpr std::vector<Value> eval(std::vector<Value> x) const {
        if (this->size() == 0) {
            return std::vector<Value>(x.size(), 0);
        }
        const int n = std::max(x.size(), this->size());
        std::vector<Poly> q(4 * n);
        std::vector<Value> ans(x.size());
        x.resize(n);
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                q[p] = Poly{1, -x[l]};
            } else {
                int m = (l + r) / 2;
                build(2 * p, l, m);
                build(2 * p + 1, m, r);
                q[p] = q[2 * p] * q[2 * p + 1];
            }
        };
        build(1, 0, n);
        std::function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) {
            if (r - l == 1) {
                if (l < int(ans.size())) {
                    ans[l] = num[0];
                }
            } else {
                int m = (l + r) / 2;
                work(2 * p, l, m, num.mulT(q[2 * p + 1]).resize(m - l));
                work(2 * p + 1, m, r, num.mulT(q[2 * p]).resize(r - m));
            }
        };
        work(1, 0, n, mulT(q[1].inv(n)));
        return ans;
    }
};

template<int P = 998244353>
Poly<P> berlekampMassey(const Poly<P> &s) {
    Poly<P> c;
    Poly<P> oldC;
    int f = -1;
    for (int i = 0; i < s.size(); i++) {
        auto delta = s[i];
        for (int j = 1; j <= c.size(); j++) {
            delta -= c[j - 1] * s[i - j];
        }
        if (delta == 0) {
            continue;
        }
        if (f == -1) {
            c.resize(i + 1);
            f = i;
        } else {
            auto d = oldC;
            d *= -1;
            d.insert(d.begin(), 1);
            MInt<P> df1 = 0;
            for (int j = 1; j <= d.size(); j++) {
                df1 += d[j - 1] * s[f + 1 - j];
            }
            assert(df1 != 0);
            auto coef = delta / df1;
            d *= coef;
            Poly<P> zeros(i - f - 1);
            zeros.insert(zeros.end(), d.begin(), d.end());
            d = zeros;
            auto temp = c;
            c += d;
            if (i - temp.size() > f - oldC.size()) {
                oldC = temp;
                f = i;
            }
        }
    }
    c *= -1;
    c.insert(c.begin(), 1);
    return c;
}


template<int P = 998244353>
MInt<P> linearRecurrence(Poly<P> p, Poly<P> q, i64 n) {
    int m = q.size() - 1;
    while (n > 0) {
        auto newq = q;
        for (int i = 1; i <= m; i += 2) {
            newq[i] *= -1;
        }
        auto newp = p * newq;
        newq = q * newq;
        for (int i = 0; i < m; i++) {
            p[i] = newp[i * 2 + n % 2];
        }
        for (int i = 0; i <= m; i++) {
            q[i] = newq[i * 2];
        }
        n /= 2;
    }
    return p[0] / q[0];
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int n, m;
    std::cin >> n >> m;
    
    std::string s;
    std::cin >> s;
    
    std::vector<int> f(n + 1);
    for (int i = 1, j = 0; i < n; i++) {
        while (j && s[i] != s[j]) {
            j = f[j];
        }
        j += (s[i] == s[j]);
        f[i + 1] = j;
    }
    
    Poly q(n + 2);
    for (int i = f[n]; i; i = f[i]) {
        q[n - i] = 1;
    }
    for (int i = n; i; i--) {
        q[i] -= q[i - 1] * 26;
    }
    q[0] += 1;
    q[1] -= 26;
    q[n] += 1;
    Poly p(n + 1);
    p[n] = 1;
    std::cout << linearRecurrence(p, q, m) << "\n";
    
    return 0;
}

这程序好像有点Bug,我给组数据试试?

详细

Test #1:

score: 100
Accepted
time: 1ms
memory: 3432kb

input:

6 7
aaaaaa

output:

25

result:

ok answer is '25'

Test #2:

score: 0
Accepted
time: 0ms
memory: 3496kb

input:

3 5
aba

output:

675

result:

ok answer is '675'

Test #3:

score: 0
Accepted
time: 1ms
memory: 3416kb

input:

1 1
a

output:

1

result:

ok answer is '1'

Test #4:

score: 0
Accepted
time: 1ms
memory: 3500kb

input:

5 7
ababa

output:

675

result:

ok answer is '675'

Test #5:

score: 0
Accepted
time: 1ms
memory: 3456kb

input:

1 3
a

output:

625

result:

ok answer is '625'

Test #6:

score: 0
Accepted
time: 1ms
memory: 3508kb

input:

10 536870912
njjnttnjjn

output:

826157401

result:

ok answer is '826157401'

Test #7:

score: 0
Accepted
time: 2103ms
memory: 10464kb

input:

65535 536870912
aaaoaaaoaaaoaaayaaaoaaaoaaaoaaayaaaoaaaoaaaoaaayaaaoaaaoaaaoaaaeaaaoaaaoaaaoaaayaaaoaaaoaaaoaaayaaaoaaaoaaaoaaayaaaoaaaoaaaoaaaeaaaoaaaoaaaoaaayaaaoaaaoaaaoaaayaaaoaaaoaaaoaaayaaaoaaaoaaaoaaaeaaaoaaaoaaaoaaayaaaoaaaoaaaoaaayaaaoaaaoaaaoaaayaaaoaaaoaaaoaaaraaaoaaaoaaaoaaayaaaoaaaoaaao...

output:

996824286

result:

ok answer is '996824286'

Test #8:

score: 0
Accepted
time: 2894ms
memory: 11608kb

input:

99892 536870912
wwwwbwwwwbwwwwqwwwwbwwwwbwwwwqwwwwbwwwwbwwwweewwwwbwwwwbwwwwqwwwwbwwwwbwwwwqwwwwbwwwwbwwwweewwwwbwwwwbwwwwqwwwwbwwwwbwwwwqwwwwbwwwwbwwwwawwwwbwwwwbwwwwqwwwwbwwwwbwwwwqwwwwbwwwwbwwwweewwwwbwwwwbwwwwqwwwwbwwwwbwwwwqwwwwbwwwwbwwwweewwwwbwwwwbwwwwqwwwwbwwwwbwwwwqwwwwbwwwwbwwwwawwwwbwwwwb...

output:

718505966

result:

ok answer is '718505966'

Test #9:

score: 0
Accepted
time: 2921ms
memory: 11460kb

input:

100000 536870912
rrmrrqrrmrrcrrmrrqrrmrrbrrmrrqrrmrrcrrmrrqrrmrrnnrrmrrqrrmrrcrrmrrqrrmrrbrrmrrqrrmrrcrrmrrqrrmrrttrrmrrqrrmrrcrrmrrqrrmrrbrrmrrqrrmrrcrrmrrqrrmrrnnrrmrrqrrmrrcrrmrrqrrmrrbrrmrrqrrmrrcrrmrrqrrmrrarrmrrqrrmrrcrrmrrqrrmrrbrrmrrqrrmrrcrrmrrqrrmrrnnrrmrrqrrmrrcrrmrrqrrmrrbrrmrrqrrmrrcrrm...

output:

824845147

result:

ok answer is '824845147'

Test #10:

score: 0
Accepted
time: 2917ms
memory: 11620kb

input:

99892 1000000000
ggggjggggjggggxggggjggggjggggxggggjggggjggggeeggggjggggjggggxggggjggggjggggxggggjggggjggggeeggggjggggjggggxggggjggggjggggxggggjggggjggggbggggjggggjggggxggggjggggjggggxggggjggggjggggeeggggjggggjggggxggggjggggjggggxggggjggggjggggeeggggjggggjggggxggggjggggjggggxggggjggggjggggbggggjgggg...

output:

971128221

result:

ok answer is '971128221'

Test #11:

score: 0
Accepted
time: 2438ms
memory: 11612kb

input:

100000 625346716
kwfuguxrbiwlvyqsbujelgcafpsnxsgefwxqoeeiwoolreyxvaahagoibdrznebsgelthdzqwxcdglvbpawhdgaxpiyjglzhiamhtptsyyzyyhzjvnqfyqhnrtbwgeyotmltodidutmyvzfqfctnqugmrdtuyiyttgcsjeupuuygwqrzfibxhaefmbtzfhvopmtwwycopheuacgwibxlsjpupdmchvzneodwuzzteqlzlfizpleildqqpcuiechcwearxlvplatyrzxfochdfjqcmzt...

output:

0

result:

ok answer is '0'

Test #12:

score: 0
Accepted
time: 1691ms
memory: 10696kb

input:

65536 35420792
pkmyknsqmhwuevibxjgrftrinkulizarxbkmgorddvuvtrhdadnlxfrxsyqhueuefdkanysaixmhbdqyskjdrzntlaqtwoscxldmyzahzwximvjgsjuddejbsbwtxgkbzfzdusucccohjwjuaasnkindxjjtxdbxmitcixrcmawdezafgnigghdtoyzazyfedzsuwsrlkdtarcmzqnszgnyiqvzamjtamvfrhzucdsfscyzdbvbxutwraktnmfrdfbejcbhjcgczgwiucklwydmuuozlu...

output:

0

result:

ok answer is '0'

Test #13:

score: 0
Accepted
time: 2791ms
memory: 11432kb

input:

100000 1000000000
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn...

output:

545362217

result:

ok answer is '545362217'

Test #14:

score: 0
Accepted
time: 2676ms
memory: 11604kb

input:

100000 536870911
ggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg...

output:

332737929

result:

ok answer is '332737929'

Test #15:

score: 0
Accepted
time: 2334ms
memory: 11564kb

input:

100000 536870911
qodtwstdnykduvzvvvzmpawqaajvcdatuzzjisoezaqtvqhghmixvlfyhznvrlhdslyyhxoqchflfdjiefikpfrykekhjqywxpwmihiojcfzcmqelrkddbpkcnqcaopdyhldawyrvkqfbqpybewrtusifbfdtxiflxtkzdjqbocozdpupunehraytkhqnobhzeohkvbjyrdfebstqfjlvrcabimlybsnuaqgfcldvklwnyuywvfpdqwmortctexzaufmazyatybltglyonllufofiyr...

output:

592710827

result:

ok answer is '592710827'

Test #16:

score: 0
Accepted
time: 1125ms
memory: 11604kb

input:

100000 100000
ciawhxojdqnivfonswbklnoocigwmkbjtkzahqgysihfdeqhialusobeeazqaqzryakqycapfswxpithldpuiflxzpgsysjwnpinfubqlyadphswzvzbrxcdbbhavtzkvwrcqecfnzawisgkvsopjnfzfnlecuesnffqzcknunwsxlrbvdzqbduypfrwgqqnrjstxgjaeuqxxajfbmidkwhrgkpjduftivfwnuugxomyznpbtbcstdkdaitvpdtuvyzipygztosvjwwdascbqthqdgkbit...

output:

1

result:

ok answer is '1'

Test #17:

score: 0
Accepted
time: 2458ms
memory: 11568kb

input:

100000 1000000000
zujpixywgppdzqtwikoyhvlwqvxrfdylopuqgprrqpgqmgfkmhbucwkgdljyfzzbtaxxnltmbptwhknjjqlbeuiowdblqppqeeuunexkghdxjtbidlacmycgwvulgaeazyiwzedaxhtskacflodouylwxfjydzfbthotdwrfcpwrkcgnxpjsmkafaaojlctmqckabidgalvptziemzphncrgtqxlvllgwwgkoqxwhziuxvkadgaohdlceuggwwzmpywsgoecwwhhbotaleesjexdxg...

output:

879141501

result:

ok answer is '879141501'

Extra Test:

score: 0
Extra Test Passed