QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#164839 | #7178. Bishops | ucup-team087# | AC ✓ | 8ms | 9824kb | C++20 | 26.9kb | 2023-09-05 14:01:28 | 2023-09-05 14:01:29 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
constexpr bool is_directed() { return directed; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
pair<Graph<T, directed>, vc<int>> rearrange(vc<int> V) {
if (len(new_idx) != N) new_idx.assign(N, -1);
if (len(used_e) != M) used_e.assign(M, 0);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> es;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
used_e[e.id] = 1;
G.add(new_idx[a], new_idx[b], e.cost);
es.eb(e.id);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: es) used_e[eid] = 0;
G.build();
return {G, es};
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "library/graph/bipartite_vertex_coloring.hpp"
#line 2 "library/ds/unionfind/unionfind.hpp"
struct UnionFind {
int n, n_comp;
vc<int> dat; // par or (-size)
UnionFind(int n = 0) { build(n); }
void build(int m) {
n = m, n_comp = m;
dat.assign(n, -1);
}
void reset() { build(n); }
int operator[](int x) {
while (dat[x] >= 0) {
int pp = dat[dat[x]];
if (pp < 0) { return dat[x]; }
x = dat[x] = pp;
}
return x;
}
ll size(int x) {
x = (*this)[x];
return -dat[x];
}
bool merge(int x, int y) {
x = (*this)[x], y = (*this)[y];
if (x == y) return false;
if (-dat[x] < -dat[y]) swap(x, y);
dat[x] += dat[y], dat[y] = x, n_comp--;
return true;
}
};
#line 5 "library/graph/bipartite_vertex_coloring.hpp"
// 二部グラフでなかった場合には empty
template <typename Graph>
vc<int> bipartite_vertex_coloring(Graph& G) {
assert(G.is_prepared());
int n = G.N;
UnionFind uf(2 * n);
for (auto&& e: G.edges) {
int u = e.frm, v = e.to;
if (e.cost == 0) uf.merge(u, v), uf.merge(u + n, v + n);
if (e.cost != 0) uf.merge(u + n, v), uf.merge(u, v + n);
}
vc<int> color(2 * n, -1);
FOR(v, n) if (uf[v] == v && color[uf[v]] < 0) {
color[uf[v]] = 0;
color[uf[v + n]] = 1;
}
FOR(v, n) color[v] = color[uf[v]];
color.resize(n);
FOR(v, n) if (uf[v] == uf[v + n]) return {};
return color;
}
#line 3 "library/graph/strongly_connected_component.hpp"
template <typename Graph>
pair<int, vc<int>> strongly_connected_component(Graph& G) {
assert(G.is_directed());
assert(G.is_prepared());
int N = G.N;
int C = 0;
vc<int> comp(N);
vc<int> low(N);
vc<int> ord(N, -1);
vc<int> visited;
int now = 0;
auto dfs = [&](auto self, int v) -> void {
low[v] = now;
ord[v] = now;
++now;
visited.eb(v);
for (auto&& [frm, to, cost, id]: G[v]) {
if (ord[to] == -1) {
self(self, to);
chmin(low[v], low[to]);
} else {
chmin(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (1) {
int u = visited.back();
visited.pop_back();
ord[u] = N;
comp[u] = C;
if (u == v) break;
}
++C;
}
};
FOR(v, N) {
if (ord[v] == -1) dfs(dfs, v);
}
FOR(v, N) comp[v] = C - 1 - comp[v];
return {C, comp};
}
template <typename GT>
Graph<int, 1> scc_dag(GT& G, int C, vc<int>& comp) {
Graph<int, 1> DAG(C);
vvc<int> edges(C);
for (auto&& e: G.edges) {
int x = comp[e.frm], y = comp[e.to];
if (x == y) continue;
edges[x].eb(y);
}
FOR(c, C) {
UNIQUE(edges[c]);
for (auto&& to: edges[c]) DAG.add(c, to);
}
DAG.build();
return DAG;
}
#line 4 "library/flow/bipartite.hpp"
template <typename GT>
struct BipartiteMatching {
int N;
GT& G;
vc<int> color;
vc<int> dist, match;
vc<int> vis;
BipartiteMatching(GT& G) : N(G.N), G(G), dist(G.N, -1), match(G.N, -1) {
if (N == 0) return;
color = bipartite_vertex_coloring(G);
assert(!color.empty());
while (1) {
bfs();
vis.assign(N, false);
int flow = 0;
FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow;
if (!flow) break;
}
}
BipartiteMatching(GT& G, vc<int> color)
: N(G.N), G(G), color(color), dist(G.N, -1), match(G.N, -1) {
while (1) {
bfs();
vis.assign(N, false);
int flow = 0;
FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow;
if (!flow) break;
}
}
void bfs() {
dist.assign(N, -1);
queue<int> que;
FOR(v, N) if (!color[v] && match[v] == -1) que.emplace(v), dist[v] = 0;
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto&& e: G[v]) {
dist[e.to] = 0;
int w = match[e.to];
if (w != -1 && dist[w] == -1) dist[w] = dist[v] + 1, que.emplace(w);
}
}
}
bool dfs(int v) {
vis[v] = 1;
for (auto&& e: G[v]) {
int w = match[e.to];
if (w == -1 || (!vis[w] && dist[w] == dist[v] + 1 && dfs(w))) {
match[e.to] = v, match[v] = e.to;
return true;
}
}
return false;
}
vc<pair<int, int>> matching() {
vc<pair<int, int>> res;
FOR(v, N) if (v < match[v]) res.eb(v, match[v]);
return res;
}
vc<int> vertex_cover() {
vc<int> res;
FOR(v, N) if (color[v] ^ (dist[v] == -1)) { res.eb(v); }
return res;
}
vc<int> independent_set() {
vc<int> res;
FOR(v, N) if (!(color[v] ^ (dist[v] == -1))) { res.eb(v); }
return res;
}
vc<int> edge_cover() {
vc<bool> done(N);
vc<int> res;
for (auto&& e: G.edges) {
if (done[e.frm] || done[e.to]) continue;
if (match[e.frm] == e.to) {
res.eb(e.id);
done[e.frm] = done[e.to] = 1;
}
}
for (auto&& e: G.edges) {
if (!done[e.frm]) {
res.eb(e.id);
done[e.frm] = 1;
}
if (!done[e.to]) {
res.eb(e.id);
done[e.to] = 1;
}
}
sort(all(res));
return res;
}
/* Dulmage–Mendelsohn decomposition
https://en.wikipedia.org/wiki/Dulmage%E2%80%93Mendelsohn_decomposition
http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-ouyousurigaku/dm050410.pdf
https://hitonanode.github.io/cplib-cpp/graph/dulmage_mendelsohn_decomposition.hpp.html
- 最大マッチングとしてありうる iff 同じ W を持つ
- 辺 uv が必ず使われる:同じ W を持つ辺が唯一
- color=0 から 1 への辺:W[l] <= W[r]
- color=0 の点が必ず使われる:W=1,2,...,K
- color=1 の点が必ず使われる:W=0,1,...,K-1
*/
pair<int, vc<int>> DM_decomposition() {
// 非飽和点からの探索
vc<int> W(N, -1);
vc<int> que;
auto add = [&](int v, int x) -> void {
if (W[v] == -1) {
W[v] = x;
que.eb(v);
}
};
FOR(v, N) if (match[v] == -1 && color[v] == 0) add(v, 0);
FOR(v, N) if (match[v] == -1 && color[v] == 1) add(v, infty<int>);
while (len(que)) {
auto v = POP(que);
if (match[v] != -1) add(match[v], W[v]);
if (color[v] == 0 && W[v] == 0) {
for (auto&& e: G[v]) { add(e.to, W[v]); }
}
if (color[v] == 1 && W[v] == infty<int>) {
for (auto&& e: G[v]) { add(e.to, W[v]); }
}
}
// 残った点からなるグラフを作って強連結成分分解
vc<int> V;
FOR(v, N) if (W[v] == -1) V.eb(v);
int n = len(V);
Graph<bool, 1> DG(n);
FOR(i, n) {
int v = V[i];
if (match[v] != -1) {
int j = LB(V, match[v]);
DG.add(i, j);
}
if (color[v] == 0) {
for (auto&& e: G[v]) {
if (W[e.to] != -1 || e.to == match[v]) continue;
int j = LB(V, e.to);
DG.add(i, j);
}
}
}
DG.build();
auto [K, comp] = strongly_connected_component(DG);
K += 1;
// 答
FOR(i, n) { W[V[i]] = 1 + comp[i]; }
FOR(v, N) if (W[v] == infty<int>) W[v] = K;
return {K, W};
}
void debug() {
print("match", match);
print("min vertex covor", vertex_cover());
print("max indep set", independent_set());
print("min edge cover", edge_cover());
}
};
#line 6 "main.cpp"
int naive(int H, int W) {
Graph<int, 0> G(2 * (H + W));
FOR(x, H) FOR(y, W) {
int a = x + y;
int b = x - y + W + H + W;
G.add(a, b);
}
G.build();
BipartiteMatching<decltype(G)> BM(G);
auto match = BM.matching();
return len(match);
}
vc<pair<int, int>> gen(int H, int W) {
vc<pair<int, int>> ANS;
if (H > W) {
ANS = gen(W, H);
for (auto&& [a, b]: ANS) swap(a, b);
return ANS;
}
if (H == 1) {
FOR(y, W) ANS.eb(0, y);
return ANS;
}
if (W == H) {
FOR(x, H) ANS.eb(x, 0);
FOR(x, 1, H - 1) ANS.eb(x, W - 1);
return ANS;
}
if (H % 2 == 1 && W == 2 * H) {
FOR(x, H) ANS.eb(x, 0), ANS.eb(x, W - 1);
FOR(x, H) if (x % 2 == 1) {
ANS.eb(x, H - 1);
ANS.eb(x, H);
}
return ANS;
}
ANS = gen(H, W - H);
FOR(x, H) ANS.eb(x, W - 1);
return ANS;
}
void test() {
ll LIM = 20;
vv(int, F, LIM, LIM);
FOR(x, LIM) FOR(y, LIM) { F[x][y] = naive(x, y); }
FOR(H, 1, LIM) FOR(W, 1, LIM) {
auto ANS = gen(H, W);
// check
bool ok = 1;
set<int> SM, DIFF;
for (auto&& [x, y]: ANS) {
if (!(0 <= x && x < H)) ok = 0;
if (!(0 <= y && y < W)) ok = 0;
SM.insert(x + y);
DIFF.insert(x - y);
}
if (len(SM) != len(ANS)) ok = 0;
if (len(DIFF) != len(ANS)) ok = 0;
if (len(ANS) != F[H][W]) ok = 0;
assert(ok);
}
}
void solve() {
LL(H, W);
auto XY = gen(H, W);
print(len(XY));
for (auto&& [x, y]: XY) print(1 + x, 1 + y);
}
signed main() {
solve();
return 0;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3928kb
input:
2 5
output:
6 1 1 2 1 1 3 2 3 1 5 2 5
result:
ok n: 2, m: 5, bishops: 6
Test #2:
score: 0
Accepted
time: 2ms
memory: 3648kb
input:
5 5
output:
8 1 1 2 1 3 1 4 1 5 1 2 5 3 5 4 5
result:
ok n: 5, m: 5, bishops: 8
Test #3:
score: 0
Accepted
time: 6ms
memory: 5256kb
input:
100000 100000
output:
199998 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61...
result:
ok n: 100000, m: 100000, bishops: 199998
Test #4:
score: 0
Accepted
time: 8ms
memory: 5360kb
input:
100000 99999
output:
199998 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 ...
result:
ok n: 100000, m: 99999, bishops: 199998
Test #5:
score: 0
Accepted
time: 1ms
memory: 5204kb
input:
100000 50000
output:
149998 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 ...
result:
ok n: 100000, m: 50000, bishops: 149998
Test #6:
score: 0
Accepted
time: 4ms
memory: 4280kb
input:
1 100000
output:
100000 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 ...
result:
ok n: 1, m: 100000, bishops: 100000
Test #7:
score: 0
Accepted
time: 1ms
memory: 5416kb
input:
34535 99889
output:
134423 1 1 1 2 3 1 3 2 5 1 5 2 1 7 2 7 3 7 4 7 5 7 12 1 12 2 12 3 12 4 12 5 12 6 12 7 19 1 19 2 19 3 19 4 19 5 19 6 19 7 26 1 26 2 26 3 26 4 26 5 26 6 26 7 33 1 33 2 33 3 33 4 33 5 33 6 33 7 1 40 2 40 3 40 4 40 5 40 6 40 7 40 8 40 9 40 10 40 11 40 12 40 13 40 14 40 15 40 16 40 17 40 18 40 19 40 20 4...
result:
ok n: 34535, m: 99889, bishops: 134423
Test #8:
score: 0
Accepted
time: 2ms
memory: 4436kb
input:
12231 97889
output:
110119 1 1 1 2 3 1 3 2 5 1 5 2 7 1 7 2 9 1 9 2 11 1 11 2 13 1 13 2 1 15 2 15 3 15 4 15 5 15 6 15 7 15 8 15 9 15 10 15 11 15 12 15 13 15 1 28 2 28 3 28 4 28 5 28 6 28 7 28 8 28 9 28 10 28 11 28 12 28 13 28 1 41 2 41 3 41 4 41 5 41 6 41 7 41 8 41 9 41 10 41 11 41 12 41 13 41 54 1 54 2 54 3 54 4 54 5 5...
result:
ok n: 12231, m: 97889, bishops: 110119
Test #9:
score: 0
Accepted
time: 5ms
memory: 4360kb
input:
10000 100000
output:
109998 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61...
result:
ok n: 10000, m: 100000, bishops: 109998
Test #10:
score: 0
Accepted
time: 4ms
memory: 5600kb
input:
13 99999
output:
100011 1 1 1 2 1 3 4 1 4 2 4 3 7 1 7 2 7 3 10 1 10 2 10 3 13 1 13 2 13 3 1 16 2 16 3 16 4 16 5 16 6 16 7 16 8 16 9 16 10 16 11 16 12 16 13 16 1 29 2 29 3 29 4 29 5 29 6 29 7 29 8 29 9 29 10 29 11 29 12 29 13 29 1 42 2 42 3 42 4 42 5 42 6 42 7 42 8 42 9 42 10 42 11 42 12 42 13 42 1 55 2 55 3 55 4 55 ...
result:
ok n: 13, m: 99999, bishops: 100011
Test #11:
score: 0
Accepted
time: 1ms
memory: 4980kb
input:
21 99999
output:
100019 1 1 1 6 2 1 2 6 3 1 3 6 2 3 2 4 1 9 2 9 3 9 1 12 2 12 3 12 1 15 2 15 3 15 1 18 2 18 3 18 21 1 21 2 21 3 21 4 21 5 21 6 21 7 21 8 21 9 21 10 21 11 21 12 21 13 21 14 21 15 21 16 21 17 21 18 1 39 2 39 3 39 4 39 5 39 6 39 7 39 8 39 9 39 10 39 11 39 12 39 13 39 14 39 15 39 16 39 17 39 18 39 19 39 ...
result:
ok n: 21, m: 99999, bishops: 100019
Test #12:
score: 0
Accepted
time: 8ms
memory: 9824kb
input:
49999 100000
output:
149998 1 1 1 2 3 1 3 2 5 1 5 2 7 1 7 2 9 1 9 2 11 1 11 2 13 1 13 2 15 1 15 2 17 1 17 2 19 1 19 2 21 1 21 2 23 1 23 2 25 1 25 2 27 1 27 2 29 1 29 2 31 1 31 2 33 1 33 2 35 1 35 2 37 1 37 2 39 1 39 2 41 1 41 2 43 1 43 2 45 1 45 2 47 1 47 2 49 1 49 2 51 1 51 2 53 1 53 2 55 1 55 2 57 1 57 2 59 1 59 2 61 ...
result:
ok n: 49999, m: 100000, bishops: 149998
Test #13:
score: 0
Accepted
time: 3ms
memory: 5412kb
input:
33333 99999
output:
133331 1 1 1 66666 2 1 2 66666 3 1 3 66666 4 1 4 66666 5 1 5 66666 6 1 6 66666 7 1 7 66666 8 1 8 66666 9 1 9 66666 10 1 10 66666 11 1 11 66666 12 1 12 66666 13 1 13 66666 14 1 14 66666 15 1 15 66666 16 1 16 66666 17 1 17 66666 18 1 18 66666 19 1 19 66666 20 1 20 66666 21 1 21 66666 22 1 22 66666 23 ...
result:
ok n: 33333, m: 99999, bishops: 133331
Test #14:
score: 0
Accepted
time: 3ms
memory: 4232kb
input:
23342 98876
output:
122216 1 1 1 2 4 1 4 2 6 1 6 2 8 1 8 2 10 1 10 2 12 1 12 2 14 1 14 2 16 1 16 2 18 1 18 2 20 1 20 2 22 1 22 2 24 1 24 2 26 1 26 2 28 1 28 2 1 30 2 30 3 30 4 30 5 30 6 30 7 30 8 30 9 30 10 30 11 30 12 30 13 30 14 30 15 30 16 30 17 30 18 30 19 30 20 30 21 30 22 30 23 30 24 30 25 30 26 30 27 30 28 30 58...
result:
ok n: 23342, m: 98876, bishops: 122216
Test #15:
score: 0
Accepted
time: 2ms
memory: 5412kb
input:
56713 91234
output:
147946 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61...
result:
ok n: 56713, m: 91234, bishops: 147946
Test #16:
score: 0
Accepted
time: 4ms
memory: 5328kb
input:
99995 99995
output:
199988 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61...
result:
ok n: 99995, m: 99995, bishops: 199988
Test #17:
score: 0
Accepted
time: 3ms
memory: 4180kb
input:
12345 54321
output:
66665 1 1 1 6 2 1 2 6 3 1 3 6 2 3 2 4 1 9 2 9 3 9 1 12 2 12 3 12 1 15 2 15 3 15 18 1 18 2 18 3 18 4 18 5 18 6 18 7 18 8 18 9 18 10 18 11 18 12 18 13 18 14 18 15 33 1 33 2 33 3 33 4 33 5 33 6 33 7 33 8 33 9 33 10 33 11 33 12 33 13 33 14 33 15 48 1 48 2 48 3 48 4 48 5 48 6 48 7 48 8 48 9 48 10 48 11 4...
result:
ok n: 12345, m: 54321, bishops: 66665
Test #18:
score: 0
Accepted
time: 3ms
memory: 5436kb
input:
90000 92000
output:
181998 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 ...
result:
ok n: 90000, m: 92000, bishops: 181998
Test #19:
score: 0
Accepted
time: 0ms
memory: 4196kb
input:
10000 70000
output:
79998 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 ...
result:
ok n: 10000, m: 70000, bishops: 79998
Test #20:
score: 0
Accepted
time: 4ms
memory: 4196kb
input:
10000 70001
output:
80000 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 ...
result:
ok n: 10000, m: 70001, bishops: 80000
Test #21:
score: 0
Accepted
time: 0ms
memory: 4196kb
input:
10000 80000
output:
89998 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 ...
result:
ok n: 10000, m: 80000, bishops: 89998
Test #22:
score: 0
Accepted
time: 4ms
memory: 4184kb
input:
10000 80001
output:
90000 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 ...
result:
ok n: 10000, m: 80001, bishops: 90000
Test #23:
score: 0
Accepted
time: 4ms
memory: 5096kb
input:
10000 80002
output:
90000 1 1 1 2 4 1 4 2 6 1 6 2 8 1 8 2 10 1 10 2 12 1 12 2 14 1 14 2 16 1 16 2 18 1 18 2 20 1 20 2 22 1 22 2 24 1 24 2 26 1 26 2 28 1 28 2 30 1 30 2 32 1 32 2 34 1 34 2 36 1 36 2 38 1 38 2 40 1 40 2 42 1 42 2 44 1 44 2 46 1 46 2 48 1 48 2 50 1 50 2 52 1 52 2 54 1 54 2 56 1 56 2 58 1 58 2 60 1 60 2 62...
result:
ok n: 10000, m: 80002, bishops: 90000
Test #24:
score: 0
Accepted
time: 4ms
memory: 4160kb
input:
10000 79999
output:
89998 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 6...
result:
ok n: 10000, m: 79999, bishops: 89998
Test #25:
score: 0
Accepted
time: 3ms
memory: 5116kb
input:
10000 79998
output:
89996 1 1 2 1 1 4 2 4 1 6 2 6 1 8 2 8 1 10 2 10 1 12 2 12 1 14 2 14 1 16 2 16 1 18 2 18 1 20 2 20 1 22 2 22 1 24 2 24 1 26 2 26 1 28 2 28 1 30 2 30 1 32 2 32 1 34 2 34 1 36 2 36 1 38 2 38 1 40 2 40 1 42 2 42 1 44 2 44 1 46 2 46 1 48 2 48 1 50 2 50 1 52 2 52 1 54 2 54 1 56 2 56 1 58 2 58 1 60 2 60 1 ...
result:
ok n: 10000, m: 79998, bishops: 89996
Test #26:
score: 0
Accepted
time: 5ms
memory: 4156kb
input:
11111 100000
output:
111110 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61...
result:
ok n: 11111, m: 100000, bishops: 111110
Test #27:
score: 0
Accepted
time: 1ms
memory: 3640kb
input:
1 1
output:
1 1 1
result:
ok n: 1, m: 1, bishops: 1
Extra Test:
score: 0
Extra Test Passed