QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#153022#2447. Domino CoveringjoonAC ✓1534ms3524kbC++1710.7kb2023-08-29 09:03:012023-08-29 09:03:01

Judging History

你现在查看的是测评时间为 2023-08-29 09:03:01 的历史记录

  • [2024-10-07 15:52:55]
  • 管理员手动重测该提交记录
  • 测评结果:AC
  • 用时:1896ms
  • 内存:3880kb
  • [2024-10-07 15:50:45]
  • 管理员手动重测该提交记录
  • 测评结果:100
  • 用时:1ms
  • 内存:3648kb
  • [2023-08-29 09:03:01]
  • 评测
  • 测评结果:100
  • 用时:1534ms
  • 内存:3524kb
  • [2023-08-29 09:03:01]
  • 提交

answer

#include <bits/stdc++.h>
#ifdef JOON
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define debug(...) 42
#endif
using namespace std;

template<class ModWrapper>
class modular {
private:
    using T = typename decay<decltype(ModWrapper::value)>::type;
    T value;

public:
    using value_type = T;

    constexpr modular() : value() {}

    constexpr static T mod() {
        return ModWrapper::value;
    }

    template<class V>
    static T norm(const V &x) {
        T val;
        if (x >= static_cast<V>(0)) {
            val = static_cast<T>(x < mod() ? x : x % mod());
        } else {
            val = static_cast<T>(-x <= mod() ? x : x % mod());
            if (val < static_cast<T>(0)) {
                val += mod();
            }
        }
        return val;
    }

    template<class V>
    modular(const V &x) : value(norm(x)) {}

    template<class V>
    explicit operator V() const {
        return static_cast<V>(value);
    }

    modular &operator+=(const modular &other) {
        if (value < mod() - other.value) {
            value += other.value;
        } else {
            value -= mod() - other.value;
        }
        return *this;
    }

    modular &operator-=(const modular &other) {
        if (value >= other.value) {
            value -= other.value;
        } else {
            value += mod() - other.value;
        }
        return *this;
    }

    template<class V = T>
    typename enable_if<(sizeof(V) <= 4), modular>::type &operator*=(const modular &other) {
        value = norm(static_cast<int64_t>(value) * static_cast<int64_t>(other.value));
        return *this;
    }

    template<class V = T>
    typename enable_if<(sizeof(V) > 4 && sizeof(V) <= 8), modular>::type &operator*=(const modular &other) {
        using i128 = __int128;
        value = norm(static_cast<i128>(value) * static_cast<i128>(other.value));
        return *this;
    }

    modular inverse() const {
        T u = static_cast<T>(0), v = static_cast<T>(1);
        T a = value, m = mod();
        while (a != static_cast<T>(0)) {
            T t = m / a;
            m -= t * a;
            swap(a, m);
            u -= t * v;
            swap(u, v);
        }
        assert(m == 1);
        return modular(u);
    }

    modular &operator/=(const modular &other) {
        return *this *= other.inverse();
    }

    modular operator+(const modular &other) const {
        return modular(*this) += other;
    }

    modular operator-(const modular &other) const {
        return modular(*this) -= other;
    }

    modular operator*(const modular &other) const {
        return modular(*this) *= other;
    }

    modular operator/(const modular &other) const {
        return modular(*this) /= other;
    }

    bool operator==(const modular &other) const {
        return value == other.value;
    }

    bool operator!=(const modular &other) const {
        return !(*this == other);
    }

    template<class V>
    modular pow(const V &b) {
        bool inv = b < static_cast<V>(0);
        modular res(static_cast<T>(1));
        modular x(inv ? inverse() : *this);
        V p = inv ? -b : b;
        while (p > static_cast<V>(0)) {
            if (p & 1) {
                res *= x;
            }
            x *= x;
            p >>= 1;
        }
        return res;
    }

    template<class V> modular &operator+=(const V &other) { return *this += modular(other); }
    template<class V> modular &operator-=(const V &other) { return *this -= modular(other); }
    template<class V> modular &operator*=(const V &other) { return *this *= modular(other); }
    template<class V> modular &operator/=(const V &other) { return *this /= modular(other); }
    template<class V> modular operator+(const V &other) const { return *this + modular(other); }
    template<class V> modular operator-(const V &other) const { return *this - modular(other); }
    template<class V> modular operator*(const V &other) const { return *this * modular(other); }
    template<class V> modular operator/(const V &other) const { return *this / modular(other); }
    modular &operator++() { return *this += 1; }
    modular &operator--() { return *this -= 1; }
    modular operator++(int) { modular res(*this); *this += 1; return res; }
    modular operator--(int) { modular res(*this); *this -= 1; return res; }
    modular operator-() const { return modular(-value); }
    T operator()() const { return value; }

    template<class W>
    friend istream &operator>>(istream &in, modular<W> &n);
};

template<class V, class W> modular<W> operator+(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) + rhs; }
template<class V, class W> modular<W> operator-(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) - rhs; }
template<class V, class W> modular<W> operator*(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) * rhs; }
template<class V, class W> modular<W> operator/(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) / rhs; }
template<class V, class W> bool operator==(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) == rhs; }
template<class V, class W> bool operator!=(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) != rhs; }

template<class W>
ostream &operator<<(ostream &out, const modular<W> &n) {
    return out << n();
}

template<class W>
istream &operator>>(istream &in, modular<W> &n) {
    typename common_type<typename modular<W>::value_type, int64_t>::type x;
    in >> x;
    n.value = modular<W>::norm(x);
    return in;
}

struct varmod {
    static int value;
};
int varmod::value;
int &md = varmod::value;
using Mint = modular<varmod>;

template<class T>
class matrix {
public:
    int n, m;
    vector<vector<T>> entry;

    matrix(int n_, int m_) : n(n_), m(m_), entry(n_, vector<T>(m_)) {}
    matrix(int n_) : matrix(n_, n_) {}

    T& operator[](const pair<int, int>& p) {
        return entry[p.first][p.second];
    }

    const T& operator[](const pair<int, int>& p) const {
        return entry[p.first][p.second];
    }
};

template<class T>
matrix<T> matmul(const matrix<T>& A, const matrix<T>& B) {
    assert(A.m == B.n);
    matrix<T> C(A.n, B.m);
    for (int i = 0; i < C.n; i++) {
        for (int k = 0; k < A.m; k++) {
            for (int j = 0; j < C.m; j++) {
                C[{i, j}] += A[{i, k}] * B[{k, j}];
            }
        }
    }
    return C;
}

using poly = vector<Mint>;

void polyadd(poly &p, const poly &q, size_t sh = 0, Mint mt = 1) {
    p.resize(max(p.size(), q.size() + sh));
    for (int i = 0; i < (int)q.size(); i++) {
        p[i + sh] += q[i] * mt;
    }
    while (!p.empty() && p.back() == 0) {
        p.pop_back();
    }
}

poly polymul(const poly &p, const poly &q) {
    if (p.empty() || q.empty()) {
        return {};
    }
    int pd = (int)p.size() - 1, qd = (int)q.size() - 1;
    poly res(pd + qd + 1);
    for (int i = 0; i <= pd; i++) {
        for (int j = 0; j <= qd; j++) {
            res[i + j] += p[i] * q[j];
        }
    }
    return res;
}

void polymod(poly &p, const poly &m) {
    while (p.size() >= m.size()) {
        polyadd(p, m, p.size() - m.size(), -p.back() / m.back());
    }
}

poly &operator+=(poly &p, const poly &q) {
    polyadd(p, q);
    return p;
}

poly f_A;

poly operator*(const poly &p, const poly &q) {
    auto res = polymul(p, q);
    polymod(res, f_A);
    return res;
}

template<class T>
matrix<T> matpow(matrix<T> A, long long r) {
    assert(A.n == A.m);
    matrix<T> R(A.n);
    for (int i = 0; i < A.n; i++) {
        R[{i, i}] = {1};
    }
    while (r) {
        if (r & 1) {
            R = matmul(R, A);
        }
        A = matmul(A, A);
        r >>= 1;
    }
    return R;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(NULL);
    int tt;
    cin >> tt;
    array<array<vector<int>, 18>, 2> D;
    D[0][0] = D[1][0] = {1};
    D[0][1] = {-1, 1};
    D[1][1] = {-2, 1};
    for (int i = 2; i <= 17; i++) {
        for (auto &dp : D) {
            dp[i].resize(i + 1);
            dp[i][i] = 1;
            for (int j = 0; j < i; j++) {
                dp[i][j] = -2 * dp[i - 1][j];
                if (j) {
                    dp[i][j] += dp[i - 1][j - 1];
                }
                if (j < i - 1) {
                    dp[i][j] -= dp[i - 2][j];
                }
            }
        }
    }
    while (tt--) {
        long long n;
        int m;
        cin >> m >> n >> md;
        if (n & m & 1) {
            cout << "0\n";
            continue;
        }
        if (m == 1) {
            cout << "1\n";
            continue;
        } else if (m == 2) {
            matrix<Mint> C(2);
            C[{0, 0}] = C[{0, 1}] = C[{1, 0}] = 1;
            cout << matpow(C, n)[{0, 0}] << "\n";
            continue;
        } else if (m == 3) {
            matrix<Mint> C(2);
            C[{0, 0}] = 4;
            C[{0, 1}] = -1;
            C[{1, 0}] = 1;
            auto R = matpow(C, n >> 1);
            cout << R[{0, 0}] + R[{0, 1}] << "\n";
            continue;
        } else if (m == 4) {
            matrix<Mint> C(4);
            C[{0, 0}] = C[{0, 2}] = C[{1, 0}] = C[{2, 1}] = C[{3, 2}] = 1;
            C[{0, 1}] = 5;
            C[{0, 3}] = -1;
            auto R = matpow(C, n);
            cout << 5 * R[{2, 0}] + R[{2, 1}] + R[{2, 2}] << "\n";
            continue;
        } else if (m == 5) {
            matrix<Mint> C(4);
            C[{1, 0}] = C[{2, 1}] = C[{3, 2}] = 1;
            C[{0, 0}] = C[{0, 2}] = 15;
            C[{0, 1}] = -32;
            C[{0, 3}] = -1;
            auto R = matpow(C, n >> 1);
            cout << 1183 * R[{3, 0}] + 95 * R[{3, 1}] + 8 * R[{3, 2}] + R[{3, 3}] << "\n";
            continue;
        }
        f_A.resize((m >> 1) + 1);
        for (int i = 0; i <= (m >> 1); i++) {
            f_A[i] = D[m & 1][m >> 1][i];
        }
        matrix<poly> M(2);
        M[{0, 0}] = {2, 1};
        M[{0, 1}] = {-1};
        M[{1, 0}] = {1};
        auto R = matpow(M, n >> 1);
        auto f_B = R[{0, 0}];
        if (~n & 1) {
            polyadd(f_B, R[{0, 1}]);
        }
        Mint res = 1;
        while ((int)f_B.size() > 1) {
            swap(f_A, f_B);
            if (~f_A.size() & ~f_B.size() & 1) {
                res = -res;
            }
            auto e = f_B.size();
            polymod(f_B, f_A);
            res *= f_A.back().pow(e - f_B.size());
        }
        if (!f_B.empty()) {
            res *= f_B[0].pow(f_A.size() - 1);
        } else {
            res = 0;
        }
        cout << res << "\n";
    }
    return 0;
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1534ms
memory: 3524kb

input:

20000
3 695860418 1064851577
5 909984642 1024590071
2 702478034 1015656679
3 832070346 1020170803
3 931276816 1069777147
5 624464668 1019025517
4 563777828 1039054439
3 70355912 1062629389
2 538334151 1043751551
4 644616259 1051984399
2 565963832 1050482821
3 489913670 1030290631
5 625001688 6518147...

output:

175636008
670951730
483405543
127343329
519459233
524024279
815773299
734679810
266201944
156563661
556277524
841321357
607188444
243626454
108744246
7651374
636855097
509810366
66494941
482058350
232780855
220305284
157636415
735388230
99671148
863972210
540368496
824555091
20145756
337198629
85541...

result:

ok 20000 lines