QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#153022 | #2447. Domino Covering | joon | AC ✓ | 1534ms | 3524kb | C++17 | 10.7kb | 2023-08-29 09:03:01 | 2023-08-29 09:03:01 |
Judging History
answer
#include <bits/stdc++.h>
#ifdef JOON
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define debug(...) 42
#endif
using namespace std;
template<class ModWrapper>
class modular {
private:
using T = typename decay<decltype(ModWrapper::value)>::type;
T value;
public:
using value_type = T;
constexpr modular() : value() {}
constexpr static T mod() {
return ModWrapper::value;
}
template<class V>
static T norm(const V &x) {
T val;
if (x >= static_cast<V>(0)) {
val = static_cast<T>(x < mod() ? x : x % mod());
} else {
val = static_cast<T>(-x <= mod() ? x : x % mod());
if (val < static_cast<T>(0)) {
val += mod();
}
}
return val;
}
template<class V>
modular(const V &x) : value(norm(x)) {}
template<class V>
explicit operator V() const {
return static_cast<V>(value);
}
modular &operator+=(const modular &other) {
if (value < mod() - other.value) {
value += other.value;
} else {
value -= mod() - other.value;
}
return *this;
}
modular &operator-=(const modular &other) {
if (value >= other.value) {
value -= other.value;
} else {
value += mod() - other.value;
}
return *this;
}
template<class V = T>
typename enable_if<(sizeof(V) <= 4), modular>::type &operator*=(const modular &other) {
value = norm(static_cast<int64_t>(value) * static_cast<int64_t>(other.value));
return *this;
}
template<class V = T>
typename enable_if<(sizeof(V) > 4 && sizeof(V) <= 8), modular>::type &operator*=(const modular &other) {
using i128 = __int128;
value = norm(static_cast<i128>(value) * static_cast<i128>(other.value));
return *this;
}
modular inverse() const {
T u = static_cast<T>(0), v = static_cast<T>(1);
T a = value, m = mod();
while (a != static_cast<T>(0)) {
T t = m / a;
m -= t * a;
swap(a, m);
u -= t * v;
swap(u, v);
}
assert(m == 1);
return modular(u);
}
modular &operator/=(const modular &other) {
return *this *= other.inverse();
}
modular operator+(const modular &other) const {
return modular(*this) += other;
}
modular operator-(const modular &other) const {
return modular(*this) -= other;
}
modular operator*(const modular &other) const {
return modular(*this) *= other;
}
modular operator/(const modular &other) const {
return modular(*this) /= other;
}
bool operator==(const modular &other) const {
return value == other.value;
}
bool operator!=(const modular &other) const {
return !(*this == other);
}
template<class V>
modular pow(const V &b) {
bool inv = b < static_cast<V>(0);
modular res(static_cast<T>(1));
modular x(inv ? inverse() : *this);
V p = inv ? -b : b;
while (p > static_cast<V>(0)) {
if (p & 1) {
res *= x;
}
x *= x;
p >>= 1;
}
return res;
}
template<class V> modular &operator+=(const V &other) { return *this += modular(other); }
template<class V> modular &operator-=(const V &other) { return *this -= modular(other); }
template<class V> modular &operator*=(const V &other) { return *this *= modular(other); }
template<class V> modular &operator/=(const V &other) { return *this /= modular(other); }
template<class V> modular operator+(const V &other) const { return *this + modular(other); }
template<class V> modular operator-(const V &other) const { return *this - modular(other); }
template<class V> modular operator*(const V &other) const { return *this * modular(other); }
template<class V> modular operator/(const V &other) const { return *this / modular(other); }
modular &operator++() { return *this += 1; }
modular &operator--() { return *this -= 1; }
modular operator++(int) { modular res(*this); *this += 1; return res; }
modular operator--(int) { modular res(*this); *this -= 1; return res; }
modular operator-() const { return modular(-value); }
T operator()() const { return value; }
template<class W>
friend istream &operator>>(istream &in, modular<W> &n);
};
template<class V, class W> modular<W> operator+(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) + rhs; }
template<class V, class W> modular<W> operator-(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) - rhs; }
template<class V, class W> modular<W> operator*(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) * rhs; }
template<class V, class W> modular<W> operator/(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) / rhs; }
template<class V, class W> bool operator==(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) == rhs; }
template<class V, class W> bool operator!=(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) != rhs; }
template<class W>
ostream &operator<<(ostream &out, const modular<W> &n) {
return out << n();
}
template<class W>
istream &operator>>(istream &in, modular<W> &n) {
typename common_type<typename modular<W>::value_type, int64_t>::type x;
in >> x;
n.value = modular<W>::norm(x);
return in;
}
struct varmod {
static int value;
};
int varmod::value;
int &md = varmod::value;
using Mint = modular<varmod>;
template<class T>
class matrix {
public:
int n, m;
vector<vector<T>> entry;
matrix(int n_, int m_) : n(n_), m(m_), entry(n_, vector<T>(m_)) {}
matrix(int n_) : matrix(n_, n_) {}
T& operator[](const pair<int, int>& p) {
return entry[p.first][p.second];
}
const T& operator[](const pair<int, int>& p) const {
return entry[p.first][p.second];
}
};
template<class T>
matrix<T> matmul(const matrix<T>& A, const matrix<T>& B) {
assert(A.m == B.n);
matrix<T> C(A.n, B.m);
for (int i = 0; i < C.n; i++) {
for (int k = 0; k < A.m; k++) {
for (int j = 0; j < C.m; j++) {
C[{i, j}] += A[{i, k}] * B[{k, j}];
}
}
}
return C;
}
using poly = vector<Mint>;
void polyadd(poly &p, const poly &q, size_t sh = 0, Mint mt = 1) {
p.resize(max(p.size(), q.size() + sh));
for (int i = 0; i < (int)q.size(); i++) {
p[i + sh] += q[i] * mt;
}
while (!p.empty() && p.back() == 0) {
p.pop_back();
}
}
poly polymul(const poly &p, const poly &q) {
if (p.empty() || q.empty()) {
return {};
}
int pd = (int)p.size() - 1, qd = (int)q.size() - 1;
poly res(pd + qd + 1);
for (int i = 0; i <= pd; i++) {
for (int j = 0; j <= qd; j++) {
res[i + j] += p[i] * q[j];
}
}
return res;
}
void polymod(poly &p, const poly &m) {
while (p.size() >= m.size()) {
polyadd(p, m, p.size() - m.size(), -p.back() / m.back());
}
}
poly &operator+=(poly &p, const poly &q) {
polyadd(p, q);
return p;
}
poly f_A;
poly operator*(const poly &p, const poly &q) {
auto res = polymul(p, q);
polymod(res, f_A);
return res;
}
template<class T>
matrix<T> matpow(matrix<T> A, long long r) {
assert(A.n == A.m);
matrix<T> R(A.n);
for (int i = 0; i < A.n; i++) {
R[{i, i}] = {1};
}
while (r) {
if (r & 1) {
R = matmul(R, A);
}
A = matmul(A, A);
r >>= 1;
}
return R;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(NULL);
int tt;
cin >> tt;
array<array<vector<int>, 18>, 2> D;
D[0][0] = D[1][0] = {1};
D[0][1] = {-1, 1};
D[1][1] = {-2, 1};
for (int i = 2; i <= 17; i++) {
for (auto &dp : D) {
dp[i].resize(i + 1);
dp[i][i] = 1;
for (int j = 0; j < i; j++) {
dp[i][j] = -2 * dp[i - 1][j];
if (j) {
dp[i][j] += dp[i - 1][j - 1];
}
if (j < i - 1) {
dp[i][j] -= dp[i - 2][j];
}
}
}
}
while (tt--) {
long long n;
int m;
cin >> m >> n >> md;
if (n & m & 1) {
cout << "0\n";
continue;
}
if (m == 1) {
cout << "1\n";
continue;
} else if (m == 2) {
matrix<Mint> C(2);
C[{0, 0}] = C[{0, 1}] = C[{1, 0}] = 1;
cout << matpow(C, n)[{0, 0}] << "\n";
continue;
} else if (m == 3) {
matrix<Mint> C(2);
C[{0, 0}] = 4;
C[{0, 1}] = -1;
C[{1, 0}] = 1;
auto R = matpow(C, n >> 1);
cout << R[{0, 0}] + R[{0, 1}] << "\n";
continue;
} else if (m == 4) {
matrix<Mint> C(4);
C[{0, 0}] = C[{0, 2}] = C[{1, 0}] = C[{2, 1}] = C[{3, 2}] = 1;
C[{0, 1}] = 5;
C[{0, 3}] = -1;
auto R = matpow(C, n);
cout << 5 * R[{2, 0}] + R[{2, 1}] + R[{2, 2}] << "\n";
continue;
} else if (m == 5) {
matrix<Mint> C(4);
C[{1, 0}] = C[{2, 1}] = C[{3, 2}] = 1;
C[{0, 0}] = C[{0, 2}] = 15;
C[{0, 1}] = -32;
C[{0, 3}] = -1;
auto R = matpow(C, n >> 1);
cout << 1183 * R[{3, 0}] + 95 * R[{3, 1}] + 8 * R[{3, 2}] + R[{3, 3}] << "\n";
continue;
}
f_A.resize((m >> 1) + 1);
for (int i = 0; i <= (m >> 1); i++) {
f_A[i] = D[m & 1][m >> 1][i];
}
matrix<poly> M(2);
M[{0, 0}] = {2, 1};
M[{0, 1}] = {-1};
M[{1, 0}] = {1};
auto R = matpow(M, n >> 1);
auto f_B = R[{0, 0}];
if (~n & 1) {
polyadd(f_B, R[{0, 1}]);
}
Mint res = 1;
while ((int)f_B.size() > 1) {
swap(f_A, f_B);
if (~f_A.size() & ~f_B.size() & 1) {
res = -res;
}
auto e = f_B.size();
polymod(f_B, f_A);
res *= f_A.back().pow(e - f_B.size());
}
if (!f_B.empty()) {
res *= f_B[0].pow(f_A.size() - 1);
} else {
res = 0;
}
cout << res << "\n";
}
return 0;
}
这程序好像有点Bug,我给组数据试试?
详细
Test #1:
score: 100
Accepted
time: 1534ms
memory: 3524kb
input:
20000 3 695860418 1064851577 5 909984642 1024590071 2 702478034 1015656679 3 832070346 1020170803 3 931276816 1069777147 5 624464668 1019025517 4 563777828 1039054439 3 70355912 1062629389 2 538334151 1043751551 4 644616259 1051984399 2 565963832 1050482821 3 489913670 1030290631 5 625001688 6518147...
output:
175636008 670951730 483405543 127343329 519459233 524024279 815773299 734679810 266201944 156563661 556277524 841321357 607188444 243626454 108744246 7651374 636855097 509810366 66494941 482058350 232780855 220305284 157636415 735388230 99671148 863972210 540368496 824555091 20145756 337198629 85541...
result:
ok 20000 lines