QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#152392 | #6429. Let's Play Curling | qzez# | AC ✓ | 106ms | 6396kb | C++14 | 1.1kb | 2023-08-28 07:15:08 | 2023-08-28 07:15:09 |
Judging History
answer
#include<bits/stdc++.h>
#define Gc() getchar()
#define Me(x,y) memset(x,y,sizeof(x))
#define Mc(x,y) memcpy(x,y,sizeof(x))
#define d(x,y) ((m)*(x-1)+(y))
#define R(n) (rnd()%(n)+1)
#define Pc(x) putchar(x)
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
using namespace std;using ll=long long;using db=double;using lb=long db;using ui=unsigned;using ull=unsigned long long;using pii=pair<int,int>;using LL=__int128;
const int N=5e5+5,M=3e5+5,K=(1<<15)+5,mod=998244353,Mod=mod-1;const db eps=1e-9;const int INF=1e9+7;mt19937 rnd(time(0));
int n,m,A[N],B[N];
void Solve(){
int i,j;scanf("%d%d",&n,&m);
for(i=1;i<=n;i++) scanf("%d",&A[i]);
for(i=1;i<=m;i++) scanf("%d",&B[i]);
sort(A+1,A+n+1);sort(B+1,B+m+1);
int ans=-1;
B[0]=0;B[m+1]=1e9+7;
for(i=0;i<=m;i++){
int p=LB(A+1,A+n+1,B[i+1])-A-1;
int q=UB(A+1,A+n+1,B[i])-A;
if(q<=p) ans=max(p-q+1,ans);
}
if(ans==-1) puts("Impossible");
else printf("%d\n",ans);
}
int main(){
int t;
scanf("%d",&t);
// t=1;
while(t--) Solve();
cerr<<clock()*1.0/CLOCKS_PER_SEC<<'\n';
}
詳細信息
Test #1:
score: 100
Accepted
time: 1ms
memory: 5964kb
input:
3 2 2 2 3 1 4 6 5 2 5 3 7 1 7 3 4 3 1 10 1 1 7 7
output:
2 3 Impossible
result:
ok 3 lines
Test #2:
score: 0
Accepted
time: 106ms
memory: 6396kb
input:
5553 12 19 8 8 11 18 12 9 15 38 6 32 30 30 17 28 33 2 37 20 11 38 36 18 18 30 20 33 13 31 33 37 8 12 6 7 12 14 2 19 2 17 7 4 20 1 13 7 18 23 22 1 16 8 7 5 2 4 2 4 5 8 12 13 16 6 6 5 16 11 5 7 5 13 3 8 3 11 6 9 11 13 8 11 17 19 944782509 244117333 140979583 661724696 617847780 321687699 418677763 725...
output:
1 3 4 3 4 8 11 4 2 4 5 2 4 1 11 3 2 4 2 3 5 4 1 4 9 1 3 9 2 2 1 4 5 12 2 3 4 5 4 4 11 4 5 7 3 5 4 4 5 1 3 2 4 5 5 2 6 8 3 4 3 2 2 7 2 5 3 4 1 2 5 3 6 5 1 4 1 1 2 3 4 7 9 1 2 3 16 5 5 4 3 4 3 4 3 1 2 3 3 2 2 2 5 2 7 1 1 2 4 7 2 3 7 12 1 1 1 5 3 4 1 3 2 4 3 2 3 5 4 8 10 6 2 6 2 1 6 1 3 6 2 1 9 8 1 2 3...
result:
ok 5553 lines