QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#148642 | #2329. Greenberg Mass Comparison | ZrjaK | AC ✓ | 1ms | 3692kb | C++20 | 23.1kb | 2023-08-23 17:01:53 | 2023-08-23 20:24:27 |
Judging History
answer
#ifdef ONLINE_JUDGE
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
#endif
#include <bits/stdc++.h>
#include <ext/rope>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/priority_queue.hpp>
using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
template <class T> using Tree = tree<T, null_type, less_equal<T>, rb_tree_tag,tree_order_statistics_node_update>;
using Trie = trie<string, null_type, trie_string_access_traits<>, pat_trie_tag, trie_prefix_search_node_update>;
// template <class T> using heapq = __gnu_pbds::priority_queue<T, greater<T>, pairing_heap_tag>;
template <class T> using heapq = std::priority_queue<T, vector<T>, greater<T>>;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using ld = long double;
using ui = unsigned int;
using ull = unsigned long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pdd = pair<ld, ld>;
using vi = vector<int>;
using vvi = vector<vector<int>>;
using vll = vector<ll>;
using vvll = vector<vector<ll>>;
using vpii = vector<pii>;
using vpll = vector<pll>;
#define vc vector
#define lb lower_bound
#define ub upper_bound
#define pb push_back
#define pf push_front
#define eb emplace_back
#define fi first
#define se second
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(_1, _2, _3, name, ...) name
#define rep1(n) for(int i = 0; i < n; ++i)
#define rep2(i, n) for(int i = 0; i < n; ++i)
#define rep3(i, a, b) for(int i = a; i < b; ++i)
#define rep4(i, a, b, c) for(int i = a; i < b; i += c)
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1) (__VA_ARGS__)
#define rrep1(n) for(int i = n; i--; )
#define rrep2(i, n) for(int i = n; i--; )
#define rrep3(i, a, b) for(int i = a; i > b; i--)
#define rrep4(i, a, b, c) for(int i = a; i > b; i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1) (__VA_ARGS__)
#define each1(i, a) for(auto&& i : a)
#define each2(x, y, a) for(auto&& [x, y] : a)
#define each3(x, y, z, a) for(auto&& [x, y, z] : a)
#define each(...) overload4(__VA_ARGS__, each3, each2, each1) (__VA_ARGS__)
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define len(x) (int)x.size()
#define elif else if
#define all1(i) begin(i), end(i)
#define all2(i, a) begin(i), begin(i) + a
#define all3(i, a, b) begin(i) + a, begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1) (__VA_ARGS__)
#define rall1(i) rbegin(i), rend(i)
#define rall2(i, a) rbegin(i), rbegin(i) + a
#define rall3(i, a, b) rbegin(i) + a, rbegin(i) + b
#define rall(...) overload3(__VA_ARGS__, rall3, rall2, rall1) (__VA_ARGS__)
#define mst(x, a) memset(x, a, sizeof(x))
#define bitcnt(x) (__builtin_popcountll(x))
#define endl "\n"
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
#define SORT(a) sort(all(a))
#define REV(a) reverse(all(a))
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template<class T> auto max(const T& a){ return *max_element(all(a)); }
template<class T> auto min(const T& a){ return *min_element(all(a)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
for (int i = 0; i < N; i++) B[i + 1] = B[i] + A[i];
if (off == 0) B.erase(B.begin());
return B;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? make_pair(x, ng) : make_pair(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
while (iter--) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? make_pair(x, ng) : make_pair(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S> inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S> inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
mt19937 rng( chrono::steady_clock::now().time_since_epoch().count() );
#define Ran(a, b) rng() % ( (b) - (a) + 1 ) + (a)
struct custom_hash {
static uint64_t splitmix64(uint64_t x) {
// http://xorshift.di.unimi.it/splitmix64.c
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
size_t operator()(uint64_t x) const {
static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
size_t operator()(pair<uint64_t,uint64_t> x) const {
static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x.first + FIXED_RANDOM) ^ (splitmix64(x.second + FIXED_RANDOM) >> 1);
}
};
const i128 ONE = 1;
istream &operator>>(istream &in, i128 &x) {
string s;
in >> s;
bool minus = false;
if (s[0] == '-') {
minus = true;
s.erase(s.begin());
}
x = 0;
for (auto i : s) {
x *= 10;
x += i - '0';
}
if (minus) x = -x;
return in;
}
ostream &operator<<(ostream &out, i128 x) {
string s;
bool minus = false;
if (x < 0) {
minus = true;
x = -x;
}
while (x) {
s.push_back(x % 10 + '0');
x /= 10;
}
if (s.empty()) s = "0";
if (minus) out << '-';
reverse(s.begin(), s.end());
out << s;
return out;
}
template <class T> istream &operator>>(istream &in, vector<T> &v) {
for(auto& x : v) cin >> x;
return in;
}
template <class T> ostream &operator<<(ostream &os, const vector<T> &v) {
for(auto it = begin(v); it != end(v); ++it) {
if(it == begin(v)) os << *it;
else os << " " << *it;
}
return os;
}
template <class T> ostream &operator<<(ostream &os, const set<T> &v) {
for(auto it = begin(v); it != end(v); ++it) {
if(it == begin(v)) os << *it;
else os << " " << *it;
}
return os;
}
template <class T> ostream &operator<<(ostream &os, const multiset<T> &v) {
for(auto it = begin(v); it != end(v); ++it) {
if(it == begin(v)) os << *it;
else os << " " << *it;
}
return os;
}
template <class T> ostream &operator<<(ostream &os, const Tree<T> &v) {
for(auto it = begin(v); it != end(v); ++it) {
if(it == begin(v)) os << *it;
else os << " " << *it;
}
return os;
}
template <class T, class S> istream &operator>>(istream &in, pair<T, S> &p) {
cin >> p.first >> p.second;
return in;
}
template <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {
os << p.first << " " << p.second;
return os;
}
template <class T, size_t size> istream &operator>>(istream &in, array<T, size> &v) {
for(auto& x : v) cin >> x;
return in;
}
template <class T, size_t size> ostream &operator<<(ostream &os, const array<T, size> &v) {
for(int i = 0; i < size; i++) {
if(i == 0) os << v[i];
else os << " " << v[i];
}
return os;
}
inline void print() { std::cout << '\n'; }
template <typename Head, typename... Tail>
inline void print(const Head& head, const Tail &...tails) {
std::cout << head;
if (sizeof...(tails)) std::cout << ' ';
print(tails...);
}
template <typename Iterable>
auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) {
for (auto it = v.begin(); it != v.end();) {
std::cout << *it;
if (++it != v.end()) std::cout << sep;
}
std::cout << end;
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
cin >> head;
read(tail...);
}
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
ll gcd(ll x, ll y) {
if(!x) return y;
if(!y) return x;
int t = __builtin_ctzll(x | y);
x >>= __builtin_ctzll(x);
do {
y >>= __builtin_ctzll(y);
if (x > y) swap(x, y);
y -= x;
} while (y);
return x << t;
}
ll lcm(ll x, ll y) { return x * y / gcd(x, y); }
ll exgcd(ll a, ll b, ll &x, ll &y) {
if(!b) return x = 1, y = 0, a;
ll d = exgcd(b, a % b, x, y);
ll t = x;
x = y;
y = t - a / b * x;
return d;
}
ll max(ll x, ll y) { return x > y ? x : y; }
ll min(ll x, ll y) { return x < y ? x : y; }
ll Mod(ll x, int mod) { return (x % mod + mod) % mod; }
ll pow(ll x, ll y, ll mod){
ll res = 1, cur = x;
while (y) {
if (y & 1) res = res * cur % mod;
cur = ONE * cur * cur % mod;
y >>= 1;
}
return res % mod;
}
ll probabilityMod(ll x, ll y, ll mod) {
return x * pow(y, mod-2, mod) % mod;
}
vvi getGraph(int n, int m, bool directed = false) {
vvi res(n);
rep(_, 0, m) {
int u, v;
cin >> u >> v;
u--, v--;
res[u].emplace_back(v);
if(!directed) res[v].emplace_back(u);
}
return res;
}
vector<vpii> getWeightedGraph(int n, int m, bool directed = false) {
vector<vpii> res(n);
rep(_, 0, m) {
int u, v, w;
cin >> u >> v >> w;
u--, v--;
res[u].emplace_back(v, w);
if(!directed) res[v].emplace_back(u, w);
}
return res;
}
template <class... Args> auto ndvector(size_t n, Args &&...args) {
if constexpr (sizeof...(args) == 1) {
return vector(n, args...);
} else {
return vector(n, ndvector(args...));
}
}
const ll LINF = 0x1fffffffffffffff;
const ll MINF = 0x7fffffffffff;
const int INF = 0x3fffffff;
const int MOD = 1000000007;
const int MODD = 998244353;
const int N = 1e6 + 10;
template <typename T>
T inverse(T a, T m) {
T u = 0, v = 1;
while (a != 0) {
T t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return u;
}
template <typename T>
class Modular {
public:
using Type = typename decay<decltype(T::value)>::type;
constexpr Modular() : value() {}
template <typename U>
Modular(const U& x) {
value = normalize(x);
}
template <typename U>
static Type normalize(const U& x) {
Type v;
if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
else v = static_cast<Type>(x % mod());
if (v < 0) v += mod();
return v;
}
const Type& operator()() const { return value; }
template <typename U>
explicit operator U() const { return static_cast<U>(value); }
constexpr static Type mod() { return T::value; }
Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; }
template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }
template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); }
Modular& operator++() { return *this += 1; }
Modular& operator--() { return *this -= 1; }
Modular operator++(int) { Modular result(*this); *this += 1; return result; }
Modular operator--(int) { Modular result(*this); *this -= 1; return result; }
Modular operator-() const { return Modular(-value); }
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
#ifdef _WIN32
uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value);
uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m;
asm(
"divl %4; \n\t"
: "=a" (d), "=d" (m)
: "d" (xh), "a" (xl), "r" (mod())
);
value = m;
#else
value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
#endif
return *this;
}
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, long long>::value, Modular>::type& operator*=(const Modular& rhs) {
long long q = static_cast<long long>(static_cast<long double>(value) * rhs.value / mod());
value = normalize(value * rhs.value - q * mod());
return *this;
}
template <typename U = T>
typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) {
value = normalize(value * rhs.value);
return *this;
}
Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }
friend const Type& abs(const Modular& x) { return x.value; }
template <typename U>
friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);
template <typename U>
friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);
template <typename V, typename U>
friend V& operator>>(V& stream, Modular<U>& number);
private:
Type value;
};
template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }
template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }
template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template<typename T, typename U>
Modular<T> power(const Modular<T>& a, const U& b) {
assert(b >= 0);
Modular<T> x = a, res = 1;
U p = b;
while (p > 0) {
if (p & 1) res *= x;
x *= x;
p >>= 1;
}
return res;
}
template <typename T>
bool IsZero(const Modular<T>& number) {
return number() == 0;
}
template <typename T>
string to_string(const Modular<T>& number) {
return to_string(number());
}
// U == std::ostream? but done this way because of fastoutput
template <typename U, typename T>
U& operator<<(U& stream, const Modular<T>& number) {
return stream << number();
}
// U == std::istream? but done this way because of fastinput
template <typename U, typename T>
U& operator>>(U& stream, Modular<T>& number) {
typename common_type<typename Modular<T>::Type, long long>::type x;
stream >> x;
number.value = Modular<T>::normalize(x);
return stream;
}
/*
using ModType = int;
struct VarMod { static ModType value; };
ModType VarMod::value;
ModType& md = VarMod::value;
using Mint = Modular<VarMod>;
*/
constexpr int md = 1e9 + 7;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;
vector<Mint> fact(1, 1);
vector<Mint> inv_fact(1, 1);
Mint C(int n, int k) {
if (k < 0 || k > n) {
return 0;
}
while ((int) fact.size() < n + 1) {
fact.push_back(fact.back() * (int) fact.size());
inv_fact.push_back(1 / fact.back());
}
return fact[n] * inv_fact[k] * inv_fact[n - k];
}
void solve() {
INT(n);
// rep(n, 90, 101) {
// Mint ans = 0;
// rep(K, 1, n + 1) {
// auto dp = ndvector(K + 1, n + 1, Mint(0));
// dp[0][0] = 1;
// rep(i, K) rep(j, n) if (dp[i][j]) rep(k, 1, n + 1)
// if (j + k <= n) dp[i + 1][j + k] += dp[i][j] * C(n - j, k);
// ans += dp[K][n] / fact[K];
// }
// print(ans, ",");
// }
vector<int> ans = {0, 1, 2, 5, 15 ,
52 ,
203 ,
877 ,
4140 ,
21147 ,
115975 ,
678570 ,
4213597 ,
27644437 ,
190899322 ,
382958538 ,
480142077 ,
864869230 ,
76801385 ,
742164233 ,
157873304 ,
812832668 ,
706900318 ,
546020311 ,
173093227 ,
759867260 ,
200033042 ,
40680577 ,
159122123 ,
665114805 ,
272358185 ,
365885605 ,
744733441 ,
692873095 ,
463056339 ,
828412002 ,
817756178 ,
366396447 ,
683685664 ,
681586780 ,
840750853 ,
683889724 ,
216039853 ,
954226396 ,
858087702 ,
540284076 ,
514254014 ,
647209774 ,
900185117 ,
348985796 ,
609459762 ,
781824096 ,
756600466 ,
654591160 ,
171792186 ,
748630189 ,
848074470 ,
75742990 ,
352494923 ,
278101098 ,
462072300 ,
334907097 ,
10474572 ,
495625635 ,
586051441 ,
159996073 ,
479379757 ,
707597945 ,
561063550 ,
974840072 ,
209152841 ,
906106015 ,
467465396 ,
82034048 ,
392794164 ,
700950185 ,
344807921 ,
475335490 ,
496881113 ,
358229039 ,
519104519 ,
784488542 ,
665151655 ,
307919717 ,
591199688 ,
692769253 ,
335414677 ,
884560880 ,
847374378 ,
791103220 ,
200350027 ,
485480275 ,
557337842 ,
434181960 ,
73976309 ,
792463021 ,
462067202 ,
677783523 ,
295755371 ,
435431099 ,
193120002};
print(ans[n]);
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
solve();
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3692kb
input:
100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
output:
1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322 382958538 480142077 864869230 76801385 742164233 157873304 812832668 706900318 546020311 173093227 759867260 200033042 40680577 159122123 665114805 272358185 365885605 744733441 692873095 463056339 828412002 817756178 366396447 ...
result:
ok 100 lines