QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#142804 | #6137. Sub-cycle Graph | Nyans | AC ✓ | 66ms | 3600kb | C++14 | 1.1kb | 2023-08-19 22:50:37 | 2023-08-19 22:50:38 |
Judging History
answer
#include <cstdio>
#define mod 1000000007
int qpow(int a, int b) {
int ans = 1;
for (; b; b >>= 1, a = a * 1ll * a % mod)
if (b & 1) ans = ans * 1ll * a % mod;
return ans;
}
int T, n;
long long m;
int fac[200010], ifac[200010], ffac[200010];
main() {
n = 2e5, fac[0] = ffac[0] = 1;
for (int i = 1; i <= n; ++i) fac[i] = fac[i - 1] * 1ll * i % mod;
ifac[n] = qpow(fac[n], mod - 2);
for (int i = n; i; --i) ifac[i - 1] = ifac[i] * 1ll * i % mod;
for (int i = 1; i <= n / 2; ++i) ffac[i] = ffac[i - 1] * (2ll * i - 1) % mod;
for (int i = 1; i <= n / 2; ++i) ffac[i] = ffac[i] * 1ll * ifac[i * 2] % mod * ifac[i - 1] % mod;
for (scanf("%d", &T); T--; ) {
scanf("%d%lld", &n, &m);
if (m > n) { puts("0"); continue; }
if (m == 0) { puts("1"); continue; }
if (n == m) {
printf("%d\n", (fac[n - 1] + (fac[n - 1] % 2? mod: 0)) / 2);
continue;
}
int ans = 0;
for (int i = 1; i <= n - m; ++i)
ans = (ans + 1ll * ifac[n - m - i] * ffac[i] % mod * ifac[m - i]) % mod;
printf("%d\n", ans * 1ll * fac[n] % mod * fac[m - 1] % mod);
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 3ms
memory: 3576kb
input:
3 4 2 4 3 5 3
output:
15 12 90
result:
ok 3 number(s): "15 12 90"
Test #2:
score: 0
Accepted
time: 66ms
memory: 3600kb
input:
17446 3 0 3 1 3 2 3 3 4 0 4 1 4 2 4 3 4 4 5 0 5 1 5 2 5 3 5 4 5 5 6 0 6 1 6 2 6 3 6 4 6 5 6 6 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 11 0 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11...
output:
1 3 3 1 1 6 15 12 3 1 10 45 90 60 12 1 15 105 375 630 360 60 1 21 210 1155 3465 5040 2520 360 1 28 378 2940 13545 35280 45360 20160 2520 1 36 630 6552 42525 170100 393120 453600 181440 20160 1 45 990 13230 114345 643545 2286900 4762800 4989600 1814400 181440 1 55 1485 24750 273735 2047815 10239075 3...
result:
ok 17446 numbers