QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#134459 | #6408. Classical Counting Problem | rniya | AC ✓ | 305ms | 11048kb | C++17 | 24.2kb | 2023-08-03 20:21:14 | 2023-08-03 20:21:19 |
Judging History
answer
#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
template <typename T> struct Binomial {
Binomial(int MAX = 0) : n(1), facs(1, T(1)), finvs(1, T(1)), invs(1, T(1)) {
while (n <= MAX) extend();
}
T fac(int i) {
assert(i >= 0);
while (n <= i) extend();
return facs[i];
}
T finv(int i) {
assert(i >= 0);
while (n <= i) extend();
return finvs[i];
}
T inv(int i) {
assert(i >= 0);
while (n <= i) extend();
return invs[i];
}
T P(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
return fac(n) * finv(n - r);
}
T C(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
return fac(n) * finv(n - r) * finv(r);
}
T H(int n, int r) {
if (n < 0 || r < 0) return T(0);
return r == 0 ? 1 : C(n + r - 1, r);
}
T C_naive(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
T res = 1;
r = std::min(r, n - r);
for (int i = 1; i <= r; i++) res *= inv(i) * (n--);
return res;
}
private:
int n;
std::vector<T> facs, finvs, invs;
inline void extend() {
int m = n << 1;
facs.resize(m);
finvs.resize(m);
invs.resize(m);
for (int i = n; i < m; i++) facs[i] = facs[i - 1] * i;
finvs[m - 1] = T(1) / facs[m - 1];
invs[m - 1] = finvs[m - 1] * facs[m - 2];
for (int i = m - 2; i >= n; i--) {
finvs[i] = finvs[i + 1] * (i + 1);
invs[i] = finvs[i] * facs[i - 1];
}
n = m;
}
};
using namespace std;
typedef long long ll;
#define all(x) begin(x), end(x)
constexpr int INF = (1 << 30) - 1;
constexpr long long IINF = (1LL << 60) - 1;
constexpr int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
template <class T> istream& operator>>(istream& is, vector<T>& v) {
for (auto& x : v) is >> x;
return is;
}
template <class T> ostream& operator<<(ostream& os, const vector<T>& v) {
auto sep = "";
for (const auto& x : v) os << exchange(sep, " ") << x;
return os;
}
template <class T, class U = T> bool chmin(T& x, U&& y) { return y < x and (x = forward<U>(y), true); }
template <class T, class U = T> bool chmax(T& x, U&& y) { return x < y and (x = forward<U>(y), true); }
template <class T> void mkuni(vector<T>& v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <class T> int lwb(const vector<T>& v, const T& x) { return lower_bound(begin(v), end(v), x) - begin(v); }
using mint = atcoder::modint998244353;
Binomial<mint> BINOM;
constexpr int MAX_A = 100;
mint tle(int n, int m, int v, const vector<int>& a) {
mint ans = 0, large = 0;
vector<int> cnt(15, 0);
for (int mask = 1; mask + 1 < 1 << n; mask++) {
vector<int> b;
int maxi = -1, mini = MAX_A;
for (int i = 0; i < n; i++) {
if (mask >> i & 1) {
b.emplace_back(a[i]);
mini = min(mini, a[i]);
} else
maxi = max(maxi, a[i]);
}
bool ok = true;
if (int(b.size()) >= v) {
int need = 0;
for (int& x : b) {
if (x + m < maxi) ok = false;
need += max(0, maxi - x);
}
if (need > m * v) ok = false;
} else {
int cost = 0;
mini += m;
for (int i = 0; i < n; i++) {
if (mask >> i & 1) continue;
if (a[i] > mini) ok = false;
cost += min(m, mini - a[i]);
}
if (cost + m * int(b.size()) < m * v) ok = false;
mini -= m;
}
if (not ok) continue;
large += (int(b.size()) >= v);
if (int(b.size()) < v) cnt[mini]++;
ans++;
// debug(b);
}
// debug(large.val());
debug(cnt);
return ans;
}
void solve() {
int n, m, v;
cin >> n >> m >> v;
vector<int> a(n);
for (int& x : a) cin >> x;
sort(begin(a), end(a));
int sum = 0;
mint ans = 1; // 全部採用
vector dp(n + 1, vector<mint>(MAX_A * n + 1, 0)), ndp(n + 1, vector<mint>(MAX_A * n + 1, 0));
dp[0][0] = 1;
auto add = [&](int x) {
x = a[x];
sum += x;
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= MAX_A * n; j++) {
mint& val = dp[i][j];
if (val == 0) continue;
ndp[i][j] += val;
if (i + 1 <= n and j + x <= MAX_A * n) ndp[i + 1][j + x] += val;
val = 0;
}
}
swap(dp, ndp);
};
auto del = [&](int x) {
x = a[x];
sum -= x;
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= MAX_A * n; j++) {
mint& val = dp[i][j];
if (val == 0) continue;
ndp[i][j] += val;
if (i + 1 <= n and j + x <= MAX_A * n) ndp[i + 1][j + x] -= ndp[i][j];
val = 0;
}
}
swap(dp, ndp);
};
{
// |S| >= v
for (int threshold = 0, l = 0, r = 0; threshold <= MAX_A; threshold++) { // 採用しないものの最大値
while (r < n and a[r] < threshold) add(r++);
while (l < n and a[l] < threshold - m) del(l++);
int cnt = 0;
for (int i = 0; i < n; i++) cnt += (a[i] == threshold);
if (cnt == 0) continue;
vector<mint> imos(cnt + 1, 0);
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= MAX_A * n; j++) {
mint& val = dp[i][j];
if (val == 0) continue;
int use = i + (n - (r + cnt));
int need = threshold * i - j;
if (need <= m * v and use + cnt >= v) imos[max(0, v - use)] += val;
}
}
mint add = 0;
for (int i = 0; i < cnt; i++) { // threshold の採用する個数
if (i > 0) imos[i] += imos[i - 1];
add += imos[i] * BINOM.C(cnt, i);
}
ans += add;
}
}
sum = 0;
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= MAX_A * n; j++) {
dp[i][j] = ndp[i][j] = 0;
}
}
dp[0][0] = 1;
{
// |S| < v
for (int threshold = 0, l = 0, r = 0; threshold <= MAX_A; threshold++) { // 採用するものの最小値
while (r < n and a[r] <= threshold + m) add(r++);
while (l < n and a[l] < threshold + 1) del(l++);
int cnt = 0;
for (int i = 0; i < n; i++) cnt += (a[i] == threshold);
if (cnt == 0) continue;
vector<mint> imos(cnt + 1, 0);
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= MAX_A * n; j++) {
mint& val = dp[i][j];
if (val == 0) continue;
int use = (n - r) + i;
if (use >= v) continue;
int rest = m * (l - cnt) + ((threshold + m) * (r - l - i) - (sum - j)) + m * cnt;
// use, rest は threshold を 1 個も採用しないときの値
// 1 個採用するごとにそれぞれ 1, -m ずつ増加
// 条件は use < v かつ rest >= m * (v - use) iff rest + m * use >= m * v
int tmp = rest + m * use;
if (tmp < m * v) continue;
imos[0] += val;
if (v - use <= cnt) imos[v - use] -= val;
}
}
mint add = 0;
for (int i = 1; i <= cnt; i++) { // threshold の採用する個数
imos[i] += imos[i - 1];
add += imos[i] * BINOM.C(cnt, i);
}
ans += add;
}
}
cout << ans.val() << '\n';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
cin >> t;
for (; t--;) solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 3612kb
input:
6 3 1 2 1 2 3 3 2 1 1 2 3 10 1 1 0 0 0 0 0 0 0 0 0 0 6 1 2 2 1 1 3 0 2 6 1 5 2 1 1 3 0 2 10 4 8 7 2 3 6 1 6 5 4 6 5
output:
5 6 1023 23 19 240
result:
ok 6 numbers
Test #2:
score: 0
Accepted
time: 1ms
memory: 3548kb
input:
50 2 62 1 67 58 2 23 1 7 39 2 60 1 53 9 2 29 1 3 68 2 52 1 43 76 2 79 1 48 91 2 85 1 18 11 2 34 1 19 24 2 42 1 77 44 2 54 1 80 49 2 90 1 61 55 2 24 1 51 72 2 8 1 9 8 2 83 1 91 0 2 33 1 27 27 2 30 1 8 99 2 52 1 34 87 2 51 1 13 47 2 16 1 0 27 2 63 1 53 76 2 25 1 82 36 2 42 1 53 54 2 12 1 38 70 2 2 1 6...
output:
3 2 3 2 3 3 3 3 3 3 3 3 3 2 3 2 2 3 2 3 2 3 2 2 2 3 3 2 3 3 3 2 2 2 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3
result:
ok 50 numbers
Test #3:
score: 0
Accepted
time: 2ms
memory: 3544kb
input:
40 2 20 1 36 90 4 4 3 38 52 64 63 2 89 1 46 65 2 2 1 83 1 3 17 2 19 20 10 2 61 1 33 17 2 91 1 92 59 2 98 1 4 35 2 30 1 66 51 2 4 1 44 16 2 46 1 80 99 3 11 2 80 59 29 3 91 1 80 43 81 2 93 1 74 57 2 78 1 30 77 3 84 1 70 12 29 2 74 1 88 78 3 58 1 22 100 13 3 40 2 79 18 84 4 99 1 32 73 81 73 2 57 1 83 3...
output:
2 5 3 2 6 3 3 3 3 2 3 3 7 3 3 6 3 4 4 15 3 7 2 4 5 2 3 3 2 2 7 3 2 3 3 15 3 3 2 7
result:
ok 40 numbers
Test #4:
score: 0
Accepted
time: 2ms
memory: 3604kb
input:
30 3 82 1 18 19 77 4 22 1 63 42 11 42 2 60 1 25 90 3 87 2 21 47 5 2 50 1 88 81 4 71 1 63 29 19 68 6 69 3 13 4 71 96 73 39 3 83 2 29 88 28 2 56 1 84 20 2 43 1 8 29 2 48 1 43 9 3 88 1 12 88 58 6 42 4 16 33 47 70 66 42 7 71 1 95 96 18 92 9 20 4 3 11 1 64 46 83 2 7 1 72 49 2 35 1 15 24 3 50 2 82 22 48 4...
output:
6 7 2 7 3 12 39 7 2 3 3 6 38 22 3 2 3 5 6 7 7 3 18 2 55 3 4 3 7 7
result:
ok 30 numbers
Test #5:
score: 0
Accepted
time: 1ms
memory: 3672kb
input:
20 7 41 6 9 17 92 61 58 10 96 2 97 1 84 29 2 83 1 52 65 4 28 3 28 81 53 74 9 69 5 10 80 90 1 91 21 81 96 60 3 66 1 21 9 24 7 88 6 34 21 5 100 51 68 88 2 49 1 62 7 2 6 1 10 1 6 21 1 54 0 16 8 61 16 3 22 2 10 13 75 5 20 1 77 4 16 16 38 5 26 4 31 14 85 69 20 3 31 2 36 58 78 11 39 6 47 7 79 15 34 99 29 ...
output:
20 3 3 8 91 7 43 2 2 15 4 9 10 5 117 3 82 15 545 7
result:
ok 20 numbers
Test #6:
score: 0
Accepted
time: 29ms
memory: 5000kb
input:
10 6 32 4 3 64 60 50 71 92 5 17 3 34 22 90 94 35 46 34 44 33 32 55 85 54 4 8 56 87 90 86 88 6 76 12 76 31 80 58 70 99 92 13 59 82 20 25 97 29 64 16 39 57 40 19 17 48 86 6 60 89 99 71 83 95 6 3 62 1 60 0 96 11 85 7 79 92 34 24 79 36 75 89 78 60 5 3 91 2 55 18 29 12 41 5 75 4 81 73 71 93 50 10 43 55 6...
output:
24 10 85407 5 1426 7 647 2 6 19
result:
ok 10 numbers
Test #7:
score: 0
Accepted
time: 30ms
memory: 4368kb
input:
5 40 23 31 75 10 19 30 90 96 40 84 96 20 44 61 24 46 39 56 1 73 54 83 85 3 13 14 45 46 39 99 91 99 48 89 28 75 62 5 24 51 61 11 16 62 2 96 5 95 8 67 28 36 20 20 48 89 64 11 50 56 38 15 53 7 43 10 69 97 98 99 38 88 78 74 57 69 0 78 61 27 67 6 74 37 76 8 74 42 76 6 68 94 49 55 10 28 35 25 17 41 65 85 ...
output:
26111 2098 2839 2739716 3
result:
ok 5 number(s): "26111 2098 2839 2739716 3"
Test #8:
score: 0
Accepted
time: 31ms
memory: 4592kb
input:
4 17 100 14 65 87 80 62 80 85 47 14 13 23 91 39 5 82 59 28 46 14 83 8 46 14 88 24 70 57 14 6 63 18 98 68 20 10 40 94 16 91 33 82 64 50 16 2 64 39 76 75 35 20 0 53 14 74 2 44 83 51 67 97 93 61 77 56 12 29 95 77 7 78 46 85 76 76 38 22 94 29 3 5 27 14 12 21 45 42 2 41 92 27 54 46 15 73 38 99 68 96 79 1...
output:
40145 8703 880766959 64
result:
ok 4 number(s): "40145 8703 880766959 64"
Test #9:
score: 0
Accepted
time: 76ms
memory: 6504kb
input:
3 64 81 26 6 35 9 39 70 29 91 9 54 21 83 73 10 93 96 40 50 92 88 87 71 70 22 45 4 23 18 10 88 71 73 5 49 67 12 28 8 61 73 19 27 89 64 65 94 93 87 61 40 4 37 66 72 100 54 33 80 40 26 46 85 59 1 50 26 6 12 56 37 5 5 3 67 52 53 77 55 39 89 86 55 78 34 83 78 75 51 9 43 2 18 86 14 10 89 1 10 41 16 63 14 ...
output:
923730397 139 230
result:
ok 3 number(s): "923730397 139 230"
Test #10:
score: 0
Accepted
time: 86ms
memory: 5724kb
input:
2 56 3 30 67 80 38 54 30 78 45 29 61 28 97 77 43 38 37 75 54 84 81 32 16 63 2 90 34 95 54 88 2 44 23 37 87 20 78 71 66 4 21 52 99 15 94 4 66 37 41 100 88 26 76 10 16 36 32 63 44 49 2 24 0 0 33 9 3 41 39 91 46 13 12 43 11 68 28 0 31 16 73 21 22 72 53 79 65 92 80 26 62 93 97 48 90 77 11 4 54 19 21 89 ...
output:
267 343867
result:
ok 2 number(s): "267 343867"
Test #11:
score: 0
Accepted
time: 260ms
memory: 11000kb
input:
1 100 97 9 57 74 56 14 12 8 50 94 81 32 50 70 75 66 44 40 51 71 90 59 66 8 81 31 36 7 81 44 53 85 43 45 49 37 63 56 71 20 81 83 71 51 3 78 47 28 13 41 50 32 23 82 52 32 1 83 63 7 97 78 6 71 88 2 98 14 29 83 74 71 81 96 89 30 48 5 64 74 63 74 96 12 2 36 26 75 7 44 66 93 82 31 13 86 5 96 8 10 71 70
output:
421427517
result:
ok 1 number(s): "421427517"
Test #12:
score: 0
Accepted
time: 305ms
memory: 11048kb
input:
1 100 21 58 67 6 11 89 1 59 8 18 80 33 58 27 5 65 73 17 35 15 31 81 18 12 56 9 49 72 74 74 98 25 68 96 10 75 22 48 43 50 9 38 13 38 82 21 37 66 21 86 83 89 0 73 84 39 77 30 66 26 25 89 14 22 71 75 51 70 41 43 12 70 4 25 20 71 62 1 47 79 66 87 87 95 74 63 97 21 83 28 52 90 90 44 34 55 67 69 90 20 62 66
output:
879050745
result:
ok 1 number(s): "879050745"
Test #13:
score: 0
Accepted
time: 276ms
memory: 11004kb
input:
1 100 49 5 41 64 55 30 13 20 100 9 12 45 33 28 25 64 81 71 19 36 83 14 72 16 99 44 95 12 23 3 18 89 49 80 15 23 59 7 16 79 13 61 67 57 60 31 94 3 86 54 80 0 99 74 47 80 64 78 23 56 64 78 55 85 75 59 61 57 53 38 72 70 61 76 7 77 52 30 41 28 1 55 9 77 33 79 56 67 92 46 6 20 29 13 88 47 5 9 83 86 75 19
output:
778551245
result:
ok 1 number(s): "778551245"
Test #14:
score: 0
Accepted
time: 282ms
memory: 10964kb
input:
1 100 73 50 62 54 10 15 91 71 92 68 12 56 77 86 56 74 77 82 71 91 57 48 24 88 41 90 40 8 50 33 96 97 74 30 77 28 52 100 90 98 75 6 53 44 26 75 84 74 94 99 45 80 42 75 10 87 75 93 59 18 24 21 31 47 46 31 70 34 76 33 10 36 51 60 95 51 99 25 25 78 14 57 100 92 72 95 25 81 0 97 94 50 80 48 8 38 77 39 97...
output:
966167597
result:
ok 1 number(s): "966167597"
Test #15:
score: 0
Accepted
time: 256ms
memory: 10984kb
input:
1 100 97 8 72 76 65 90 46 54 39 59 11 35 74 88 76 73 6 35 55 68 99 71 66 93 16 69 54 73 100 31 74 26 66 81 37 9 44 24 95 60 47 29 6 41 4 96 40 44 69 66 78 70 40 99 74 94 51 73 51 37 64 10 72 42 17 71 23 22 88 39 71 24 7 11 83 24 78 21 8 16 50 92 23 74 43 89 85 59 87 3 81 48 87 50 29 7 37 13 21 93 90...
output:
578242220
result:
ok 1 number(s): "578242220"
Test #16:
score: 0
Accepted
time: 300ms
memory: 10960kb
input:
1 100 21 50 24 66 9 30 59 72 31 84 0 36 49 78 96 72 13 45 7 23 39 36 87 75 92 36 100 13 93 61 62 68 47 32 31 48 37 95 35 89 8 86 82 61 83 39 30 49 77 78 76 49 84 67 4 34 27 20 76 0 92 21 80 71 32 22 33 9 10 67 9 24 53 74 13 98 57 50 35 33 52 59 13 23 3 37 44 5 63 20 35 89 27 19 39 31 8 87 2 91 3 44
output:
474759161
result:
ok 1 number(s): "474759161"
Test #17:
score: 0
Accepted
time: 290ms
memory: 10988kb
input:
1 100 49 99 34 100 64 15 47 22 90 75 100 47 25 79 26 3 43 99 2 68 24 70 39 79 34 82 45 10 87 80 6 98 4 15 3 64 63 87 97 40 80 30 35 47 49 17 54 19 85 79 29 60 61 90 24 30 70 67 44 63 30 43 20 66 3 95 43 98 22 62 81 91 9 57 0 3 71 46 18 83 99 72 36 48 42 20 14 18 39 38 22 87 67 21 60 0 70 95 84 0 95 40
output:
3181458
result:
ok 1 number(s): "3181458"
Test #18:
score: 0
Accepted
time: 275ms
memory: 10960kb
input:
1 100 73 46 54 89 87 57 92 73 49 33 32 59 33 36 46 2 50 8 87 56 65 60 13 50 77 28 58 40 69 10 95 39 97 66 65 34 56 46 2 70 52 54 89 67 27 60 77 90 49 90 95 6 59 59 88 70 46 14 69 82 58 55 61 17 76 67 53 86 34 57 8 22 99 8 89 45 62 75 1 21 33 6 16 30 13 47 74 98 47 56 88 49 85 56 49 60 41 69 76 66 86...
output:
353900212
result:
ok 1 number(s): "353900212"
Test #19:
score: 0
Accepted
time: 269ms
memory: 11036kb
input:
1 100 98 91 64 11 31 31 37 23 40 57 32 38 8 38 77 12 47 30 38 10 39 94 67 54 63 74 36 15 62 7 72 69 22 50 58 50 48 38 75 99 46 99 64 86 27 71 0 95 57 91 60 29 2 82 51 78 33 95 61 11 63 66 36 80 80 51 6 40 24 52 79 90 22 60 8 51 41 3 96 71 69 75 6 45 74 63 0 11 23 73 75 47 24 25 70 95 12 42 57 42 99 45
output:
991832540
result:
ok 1 number(s): "991832540"
Test #20:
score: 0
Accepted
time: 282ms
memory: 10968kb
input:
1 100 64 65 80 91 56 8 83 44 39 75 86 39 83 29 32 56 6 44 84 43 6 19 97 94 20 48 69 59 15 79 30 89 98 63 87 95 49 50 53 19 70 16 47 93 78 67 100 59 51 81 82 61 5 62 96 89 33 40 38 19 78 8 7 38 77 55 31 78 27 3 53 20 63 95 38 93 72 12 41 59 38 96 68 47 17 81 14 56 54 83 40 75 9 7 96 55 77 51 48 25 1 78
output:
267899508
result:
ok 1 number(s): "267899508"
Test #21:
score: 0
Accepted
time: 175ms
memory: 11004kb
input:
1 100 100 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100...
output:
436278057
result:
ok 1 number(s): "436278057"
Test #22:
score: 0
Accepted
time: 215ms
memory: 10968kb
input:
1 100 1 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1...
output:
131961966
result:
ok 1 number(s): "131961966"
Test #23:
score: 0
Accepted
time: 175ms
memory: 10984kb
input:
1 100 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 ...
output:
436278057
result:
ok 1 number(s): "436278057"
Test #24:
score: 0
Accepted
time: 210ms
memory: 10952kb
input:
1 100 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10...
output:
131961966
result:
ok 1 number(s): "131961966"
Test #25:
score: 0
Accepted
time: 140ms
memory: 11000kb
input:
1 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100...
output:
882499717
result:
ok 1 number(s): "882499717"
Test #26:
score: 0
Accepted
time: 133ms
memory: 10972kb
input:
1 100 1 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1...
output:
882499717
result:
ok 1 number(s): "882499717"
Test #27:
score: 0
Accepted
time: 136ms
memory: 11008kb
input:
1 100 100 1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 ...
output:
882499717
result:
ok 1 number(s): "882499717"
Test #28:
score: 0
Accepted
time: 138ms
memory: 10932kb
input:
1 100 1 1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10...
output:
882499717
result:
ok 1 number(s): "882499717"