QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#126844#6678. Gem Island 2Energy_is_not_overAC ✓1521ms296696kbC++1717.3kb2023-07-19 05:17:352024-04-23 17:44:24

Judging History

你现在查看的是最新测评结果

  • [2024-04-23 17:44:24]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:AC
  • 用时:1521ms
  • 内存:296696kb
  • [2024-04-23 17:43:38]
  • hack成功,自动添加数据
  • (/hack/600)
  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-07-19 05:17:35]
  • 评测
  • 测评结果:100
  • 用时:1072ms
  • 内存:296560kb
  • [2023-07-19 05:17:35]
  • 提交

answer

#pragma GCC optimize("Ofast", "unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4") // Linux?

#include <bits/stdc++.h>

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#define all(a) a.begin(),a.end()
#define len(a) (int)(a.size())
#define mp make_pair
#define pb push_back
#define fir first
#define sec second
#define fi first
#define se second

using namespace std;
using namespace atcoder;

typedef pair<int, int> pii;
typedef long long ll;
typedef long double ld;

#if __APPLE__
#define D for (bool _FLAG = true; _FLAG; _FLAG = false)
#define LOG(...) print(#__VA_ARGS__" ::", __VA_ARGS__) << endl
template <class ...Ts> auto &print(Ts ...ts) { return ((cerr << ts << " "), ...); }
#else
#define D while (false)
#define LOG(...)
#endif

const int max_f = 3e7+10;
const int max_f2 = 1.5e7+10;

using mint = modint998244353;

mint f[max_f], rf[max_f2];

mint inversed[max_f2];

void get_all_f() {
    f[0] = rf[0] = 1;
    for (int i = 1; i < max_f; ++i) {
        f[i] = f[i - 1] * i;
    }
    rf[max_f2 - 1] = 1 / f[max_f2 - 1];
    for (int i = max_f2 - 2; i > 0; --i) {
        rf[i] = rf[i + 1] * (i + 1);
    }

    for (int i=1;i<max_f2;i++){
        inversed[i]=f[i-1]*rf[i];
    }
}

mint get_c(int n, int k) {
    if (n < k) {
        return 0;
    }
    return f[n] * rf[k] * rf[n - k];
}

mint get_ways(int ones,int poses)
{
    if (ones<0){
        return 0;
    }
    return get_c(ones+poses-1,poses-1);
}

int magic[max_f2];

int main() {
//    freopen("input.txt", "r", stdin);
//    freopen("output.txt", "w", stdout);

    ios_base::sync_with_stdio(0);
    cin.tie(0);




    get_all_f();

    int n,d,r;
    cin>>n>>d>>r;
    //n=d=r=15000000;

    for (int i=0;i<max_f2;i++){
        magic[i] = (f[i+(n-1)]*rf[i]).val();
    }

    mint ans=0;
    mint sign = 1;
    for (int k=1;k<=n;k++){
        sign = -sign;
        mint sum1=0;
        mint sum2=0;
        const int R1=min(k,r);
        if (k==1) {
            sum1=-1;
        } else if (k==R1) {
            sum1=0;
        } else {
            sum1=rf[R1-1]*inversed[k-1]*rf[k-R1-1];
            if (R1 % 2) {
                sum1 = -sum1;
            }
        }
        const int L1=min(k,r)+1;
        if (L1>k){
            sum2=0;
        }
        else{
            sum2=rf[L1-1]*inversed[k]*rf[k-L1];
            if (L1 % 2) {
                sum2 = -sum2;
            }
        }
        sum2 *= r;
        mint sum=sum1;
        sum +=sum2;
        sum *= sign;
        sum *= rf[n - k];
        long long ok = 0;
        const int max_v = min(n + d, d / k + 1);
        for (int val = d - k * (max_v - 1), v = max_v; v >= 2; val += k, --v) {
            ok += magic[val];
            //ok += magic[d-k*(v-1)];
        }
        ans += sum * ok;
    }
    ans*=rf[n-1]*f[n]/get_ways(d,n);
    ans += r;
    cout<<ans.val()<<"\n";
}

这程序好像有点Bug,我给组数据试试?

詳細信息

Test #1:

score: 100
Accepted
time: 244ms
memory: 296568kb

input:

2 3 1

output:

499122180

result:

ok 1 number(s): "499122180"

Test #2:

score: 0
Accepted
time: 236ms
memory: 296616kb

input:

3 3 2

output:

698771052

result:

ok 1 number(s): "698771052"

Test #3:

score: 0
Accepted
time: 276ms
memory: 296612kb

input:

5 10 3

output:

176512750

result:

ok 1 number(s): "176512750"

Test #4:

score: 0
Accepted
time: 268ms
memory: 296624kb

input:

5 4 3

output:

71303175

result:

ok 1 number(s): "71303175"

Test #5:

score: 0
Accepted
time: 270ms
memory: 296684kb

input:

37 47 12

output:

962577218

result:

ok 1 number(s): "962577218"

Test #6:

score: 0
Accepted
time: 271ms
memory: 296556kb

input:

29 50 26

output:

175627840

result:

ok 1 number(s): "175627840"

Test #7:

score: 0
Accepted
time: 259ms
memory: 296556kb

input:

298 498 221

output:

765832019

result:

ok 1 number(s): "765832019"

Test #8:

score: 0
Accepted
time: 239ms
memory: 296692kb

input:

497 456 243

output:

414028615

result:

ok 1 number(s): "414028615"

Test #9:

score: 0
Accepted
time: 254ms
memory: 296696kb

input:

114514 1926 817

output:

691374994

result:

ok 1 number(s): "691374994"

Test #10:

score: 0
Accepted
time: 285ms
memory: 296684kb

input:

1919810 1554 1999

output:

3553

result:

ok 1 number(s): "3553"

Test #11:

score: 0
Accepted
time: 269ms
memory: 296552kb

input:

1926817 1514 1001

output:

685086550

result:

ok 1 number(s): "685086550"

Test #12:

score: 0
Accepted
time: 293ms
memory: 296644kb

input:

1432132 1425 1425

output:

2850

result:

ok 1 number(s): "2850"

Test #13:

score: 0
Accepted
time: 1208ms
memory: 296680kb

input:

14999999 15000000 14999999

output:

29999999

result:

ok 1 number(s): "29999999"

Test #14:

score: 0
Accepted
time: 261ms
memory: 296640kb

input:

98765 99654 85647

output:

815183913

result:

ok 1 number(s): "815183913"

Test #15:

score: 0
Accepted
time: 233ms
memory: 296588kb

input:

99999 100000 99998

output:

832290200

result:

ok 1 number(s): "832290200"

Test #16:

score: 0
Accepted
time: 247ms
memory: 296616kb

input:

1541 99998 725

output:

463021366

result:

ok 1 number(s): "463021366"

Test #17:

score: 0
Accepted
time: 304ms
memory: 296648kb

input:

985438 998756 101254

output:

671487608

result:

ok 1 number(s): "671487608"

Test #18:

score: 0
Accepted
time: 264ms
memory: 296632kb

input:

998654 999856 2

output:

92085960

result:

ok 1 number(s): "92085960"

Test #19:

score: 0
Accepted
time: 278ms
memory: 296568kb

input:

45876 1000000 13

output:

208089291

result:

ok 1 number(s): "208089291"

Test #20:

score: 0
Accepted
time: 1505ms
memory: 296632kb

input:

15000000 14999999 514

output:

143843956

result:

ok 1 number(s): "143843956"

Test #21:

score: 0
Accepted
time: 1521ms
memory: 296620kb

input:

14985345 14999998 145124

output:

785676527

result:

ok 1 number(s): "785676527"

Test #22:

score: 0
Accepted
time: 1414ms
memory: 296684kb

input:

14855345 14993298 1451424

output:

779861797

result:

ok 1 number(s): "779861797"

Test #23:

score: 0
Accepted
time: 265ms
memory: 296644kb

input:

1 1 1

output:

2

result:

ok 1 number(s): "2"

Test #24:

score: 0
Accepted
time: 1216ms
memory: 296628kb

input:

15000000 15000000 15000000

output:

30000000

result:

ok 1 number(s): "30000000"

Extra Test:

score: 0
Extra Test Passed