QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#125590#6744. SquareawellwellAC ✓180ms3356kbC++141.2kb2023-07-16 23:02:592023-07-16 23:03:03

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-07-16 23:03:03]
  • 评测
  • 测评结果:AC
  • 用时:180ms
  • 内存:3356kb
  • [2023-07-16 23:02:59]
  • 提交

answer

#include<bits/stdc++.h>

using namespace std;
#define forn(i,p,q) for(long long i = p;i <=q;i++)
#define pii pair<int,int>
#define x first
#define y second
int dx[] = {1,-1,0,0};
int dy[] = {0,0,1,-1};
long long sum(long long x)
{
    return x * (x + 1LL) / 2LL;
}
long long binary1(long long l, long long r, long long x)
{
	while(l<r)
	{
		long long mid=(r+l)>>1;
		if(sum(mid) >= x) r=mid;//类似于线段树,check()则取r = 左的最后一个
		else l=mid+1;//否则就是l = 右的第一个
	}
	return l;//可以做类似于上面的改变,!check(),返回l+极小元
}
long long lv(long long x)
{
    return binary1(1,2000000000,x);
}
int main()
{
    long long T;
    cin >> T;
    while(T--)
    {
        long long p, q;
        cin >> p >> q;
        if(p >= q) cout << p - q << endl;
        else
        {
            long long plv = lv(p), qlv = lv(q);
            long long ans = (sum(qlv) - q) - (sum(plv) - p);
            if(ans < 0)
            {
                ans = (sum(qlv) - q) + (p - sum(plv-1)) + 1;
            }
            cout << qlv - plv + ans << endl;
        }
    }
	return 0;
}
//1000000000000000000

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3356kb

input:

2
5 1
1 5

output:

4
3

result:

ok 2 number(s): "4 3"

Test #2:

score: 0
Accepted
time: 180ms
memory: 3308kb

input:

100000
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
1 20
1 21
1 22
1 23
1 24
1 25
1 26
1 27
1 28
1 29
1 30
1 31
1 32
1 33
1 34
1 35
1 36
1 37
1 38
1 39
1 40
1 41
1 42
1 43
1 44
1 45
1 46
1 47
1 48
1 49
1 50
1 51
1 52
1 53
1 54
1 55
1 56
1 57
1 58
1 59
1 60
1 ...

output:

0
2
1
4
3
2
6
5
4
3
8
7
6
5
4
10
9
8
7
6
5
12
11
10
9
8
7
6
14
13
12
11
10
9
8
7
16
15
14
13
12
11
10
9
8
18
17
16
15
14
13
12
11
10
9
20
19
18
17
16
15
14
13
12
11
10
22
21
20
19
18
17
16
15
14
13
12
11
24
23
22
21
20
19
18
17
16
15
14
13
12
26
25
24
23
22
21
20
19
18
1
0
2
2
1
3
4
3
2
4
6
5
4
3
5
...

result:

ok 100000 numbers