QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#125547 | #6740. Function | rniya | AC ✓ | 210ms | 6064kb | C++17 | 21.2kb | 2023-07-16 20:21:45 | 2023-07-16 20:21:48 |
Judging History
answer
#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
namespace elementary_math {
template <typename T> std::vector<T> divisor(T n) {
std::vector<T> res;
for (T i = 1; i * i <= n; i++) {
if (n % i == 0) {
res.emplace_back(i);
if (i * i != n) res.emplace_back(n / i);
}
}
return res;
}
template <typename T> std::vector<std::pair<T, int>> prime_factor(T n) {
std::vector<std::pair<T, int>> res;
for (T p = 2; p * p <= n; p++) {
if (n % p == 0) {
res.emplace_back(p, 0);
while (n % p == 0) {
res.back().second++;
n /= p;
}
}
}
if (n > 1) res.emplace_back(n, 1);
return res;
}
std::vector<int> osa_k(int n) {
std::vector<int> min_factor(n + 1, 0);
for (int i = 2; i <= n; i++) {
if (min_factor[i]) continue;
for (int j = i; j <= n; j += i) {
if (!min_factor[j]) {
min_factor[j] = i;
}
}
}
return min_factor;
}
std::vector<int> prime_factor(const std::vector<int>& min_factor, int n) {
std::vector<int> res;
while (n > 1) {
res.emplace_back(min_factor[n]);
n /= min_factor[n];
}
return res;
}
long long modpow(long long x, long long n, long long mod) {
assert(0 <= n && 1 <= mod && mod < (1LL << 31));
if (mod == 1) return 0;
x %= mod;
long long res = 1;
while (n > 0) {
if (n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
long long extgcd(long long a, long long b, long long& x, long long& y) {
long long d = a;
if (b != 0) {
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
} else
x = 1, y = 0;
return d;
}
long long inv_mod(long long a, long long mod) {
assert(1 <= mod);
long long x, y;
if (extgcd(a, mod, x, y) != 1) return -1;
return (mod + x % mod) % mod;
}
template <typename T> T euler_phi(T n) {
auto pf = prime_factor(n);
T res = n;
for (const auto& p : pf) {
res /= p.first;
res *= p.first - 1;
}
return res;
}
std::vector<int> euler_phi_table(int n) {
std::vector<int> res(n + 1, 0);
iota(res.begin(), res.end(), 0);
for (int i = 2; i <= n; i++) {
if (res[i] != i) continue;
for (int j = i; j <= n; j += i) res[j] = res[j] / i * (i - 1);
}
return res;
}
// minimum i > 0 s.t. x^i \equiv 1 \pmod{m}
template <typename T> T order(T x, T m) {
T n = euler_phi(m);
auto cand = divisor(n);
sort(cand.begin(), cand.end());
for (auto& i : cand) {
if (modpow(x, i, m) == 1) {
return i;
}
}
return -1;
}
template <typename T> std::vector<std::tuple<T, T, T>> quotient_ranges(T n) {
std::vector<std::tuple<T, T, T>> res;
T m = 1;
for (; m * m <= n; m++) res.emplace_back(m, m, n / m);
for (; m >= 1; m--) {
T l = n / (m + 1) + 1, r = n / m;
if (l <= r and std::get<1>(res.back()) < l) res.emplace_back(l, r, n / l);
}
return res;
}
} // namespace elementary_math
using namespace std;
typedef long long ll;
#define all(x) begin(x), end(x)
constexpr int INF = (1 << 30) - 1;
constexpr long long IINF = (1LL << 60) - 1;
constexpr int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
template <class T> istream& operator>>(istream& is, vector<T>& v) {
for (auto& x : v) is >> x;
return is;
}
template <class T> ostream& operator<<(ostream& os, const vector<T>& v) {
auto sep = "";
for (const auto& x : v) os << exchange(sep, " ") << x;
return os;
}
template <class T, class U = T> bool chmin(T& x, U&& y) { return y < x and (x = forward<U>(y), true); }
template <class T, class U = T> bool chmax(T& x, U&& y) { return x < y and (x = forward<U>(y), true); }
template <class T> void mkuni(vector<T>& v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <class T> int lwb(const vector<T>& v, const T& x) { return lower_bound(begin(v), end(v), x) - begin(v); }
using mint = atcoder::modint998244353;
constexpr int MAX = 20210926, MAX_SQRT = 50010;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
int s = 1;
while (s * s <= n) s++;
vector<int> low(MAX_SQRT), high(MAX_SQRT);
auto calc = [&](int x) { return x < s ? low[x] : high[n / x]; };
auto ranges = elementary_math::quotient_ranges(n);
reverse(begin(ranges), end(ranges));
int sz = ranges.size();
for (int i = 0; i < sz; i++) {
int x = get<2>(ranges[i]);
if (x < s)
low[x] = i;
else
high[n / x] = i;
}
vector<mint> dp(sz, 0);
for (int i = 0; i < sz; i++) {
int x = get<2>(ranges[i]);
dp[i] = 1;
auto tmp = elementary_math::quotient_ranges(x);
for (auto [l, r, y] : tmp) {
l = max(2, l);
r = min(r, MAX) + 1;
if (l < r) dp[i] += dp[calc(y)] * (r - l);
}
}
mint ans = dp[sz - 1];
cout << ans.val() << '\n';
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3516kb
input:
1
output:
1
result:
ok 1 number(s): "1"
Test #2:
score: 0
Accepted
time: 1ms
memory: 3516kb
input:
2
output:
2
result:
ok 1 number(s): "2"
Test #3:
score: 0
Accepted
time: 1ms
memory: 3504kb
input:
100
output:
949
result:
ok 1 number(s): "949"
Test #4:
score: 0
Accepted
time: 1ms
memory: 3516kb
input:
10
output:
19
result:
ok 1 number(s): "19"
Test #5:
score: 0
Accepted
time: 1ms
memory: 3516kb
input:
1000
output:
48614
result:
ok 1 number(s): "48614"
Test #6:
score: 0
Accepted
time: 1ms
memory: 3552kb
input:
10000
output:
2602393
result:
ok 1 number(s): "2602393"
Test #7:
score: 0
Accepted
time: 2ms
memory: 3512kb
input:
100000
output:
139804054
result:
ok 1 number(s): "139804054"
Test #8:
score: 0
Accepted
time: 3ms
memory: 3584kb
input:
1000000
output:
521718285
result:
ok 1 number(s): "521718285"
Test #9:
score: 0
Accepted
time: 8ms
memory: 3896kb
input:
10000000
output:
503104917
result:
ok 1 number(s): "503104917"
Test #10:
score: 0
Accepted
time: 39ms
memory: 4272kb
input:
100000000
output:
198815604
result:
ok 1 number(s): "198815604"
Test #11:
score: 0
Accepted
time: 210ms
memory: 5976kb
input:
1000000000
output:
373787809
result:
ok 1 number(s): "373787809"
Test #12:
score: 0
Accepted
time: 200ms
memory: 6064kb
input:
999999999
output:
997616263
result:
ok 1 number(s): "997616263"
Test #13:
score: 0
Accepted
time: 209ms
memory: 6000kb
input:
999999990
output:
997615701
result:
ok 1 number(s): "997615701"
Test #14:
score: 0
Accepted
time: 200ms
memory: 5996kb
input:
999999900
output:
993928691
result:
ok 1 number(s): "993928691"
Test #15:
score: 0
Accepted
time: 205ms
memory: 6004kb
input:
999999000
output:
754532207
result:
ok 1 number(s): "754532207"
Test #16:
score: 0
Accepted
time: 201ms
memory: 6004kb
input:
999990000
output:
996592686
result:
ok 1 number(s): "996592686"
Test #17:
score: 0
Accepted
time: 205ms
memory: 6016kb
input:
999900000
output:
311678722
result:
ok 1 number(s): "311678722"
Test #18:
score: 0
Accepted
time: 205ms
memory: 5980kb
input:
999000000
output:
60462624
result:
ok 1 number(s): "60462624"
Test #19:
score: 0
Accepted
time: 208ms
memory: 5992kb
input:
990000000
output:
444576800
result:
ok 1 number(s): "444576800"
Test #20:
score: 0
Accepted
time: 194ms
memory: 5924kb
input:
900000000
output:
95615129
result:
ok 1 number(s): "95615129"
Test #21:
score: 0
Accepted
time: 3ms
memory: 3708kb
input:
1361956
output:
813433539
result:
ok 1 number(s): "813433539"
Test #22:
score: 0
Accepted
time: 3ms
memory: 3828kb
input:
7579013
output:
677659797
result:
ok 1 number(s): "677659797"
Test #23:
score: 0
Accepted
time: 7ms
memory: 3848kb
input:
8145517
output:
801509527
result:
ok 1 number(s): "801509527"
Test #24:
score: 0
Accepted
time: 6ms
memory: 3772kb
input:
6140463
output:
869023935
result:
ok 1 number(s): "869023935"
Test #25:
score: 0
Accepted
time: 5ms
memory: 3728kb
input:
3515281
output:
989091505
result:
ok 1 number(s): "989091505"
Test #26:
score: 0
Accepted
time: 7ms
memory: 3892kb
input:
6969586
output:
539840131
result:
ok 1 number(s): "539840131"