QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#125524#6329. Colorful GraphEnergy_is_not_over#WA 160ms54876kbC++1711.7kb2023-07-16 19:57:382023-07-16 19:57:43

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-07-16 19:57:43]
  • 评测
  • 测评结果:WA
  • 用时:160ms
  • 内存:54876kb
  • [2023-07-16 19:57:38]
  • 提交

answer

//#pragma GCC optimize("Ofast", "unroll-loops")
//#pragma GCC target("sse", "sse2", "sse3", "ssse3", "sse4")

#ifdef __APPLE__
#include <iostream>
#include <cmath>
#include <algorithm>
#include <stdio.h>
#include <cstdint>
#include <cstring>
#include <string>
#include <cstdlib>
#include <vector>
#include <bitset>
#include <map>
#include <queue>
#include <ctime>
#include <stack>
#include <set>
#include <list>
#include <random>
#include <deque>
#include <functional>
#include <iomanip>
#include <sstream>
#include <fstream>
#include <complex>
#include <numeric>
#include <cassert>
#include <array>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <thread>
#else
#include <bits/stdc++.h>
#endif

#define all(a) a.begin(),a.end()
#define len(a) (int)(a.size())
#define mp make_pair
#define pb push_back
#define fir first
#define sec second
#define fi first
#define se second

using namespace std;

typedef pair<int, int> pii;
typedef long long ll;
typedef long double ld;

template<typename T>
bool umin(T &a, T b) {
    if (b < a) {
        a = b;
        return true;
    }
    return false;
}
template<typename T>
bool umax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

#if __APPLE__
#define D for (bool _FLAG = true; _FLAG; _FLAG = false)
#define LOG(...) print(#__VA_ARGS__" ::", __VA_ARGS__) << endl
template <class ...Ts> auto &print(Ts ...ts) { return ((cerr << ts << " "), ...); }
#else
#define D while (false)
#define LOG(...)
#endif

const int max_n = 2e5+10, inf = 1000111222;

ll __gcd(ll a,ll b)
{
    while (a&&b){
        if (a>=b){
            a%=b;
        }
        else{
            b%=a;
        }
    }
    return a+b;
}

const int mod = 998244353;
const int md=mod;

/*
 * long long version

long long mul(long long a, long long b) {
    long long x = (long double) a * b / mod;
    long long y = (a * b - x * mod) % mod;
    return y < 0 ? y + mod : y;
}

long long power(long long a, long long b) {
    if (b == 0) {
        return 1 % mod;
    }
    if (b % 2 == 0) {
        return power(mul(a, a), b / 2);
    }
    return mul(a, power(a, b - 1));
}*/

inline void inc(int &x, int y) {
    x += y;
    if (x >= mod) {
        x -= mod;
    }
}

inline void dec(int &x, int y) {
    x -= y;
    if (x < 0) {
        x += mod;
    }
}

inline int mul(int x, int y) {
    return (1LL * x * y) % mod;
}

int power(int a, int b) {
    int res = 1 % mod;
    while (b) {
        if (b % 2) {
            res = mul(res, a);
        }
        b /= 2;
        a = mul(a, a);
    }
    return res;
}

int inv(int x) {
    return power(x, mod - 2);
}

string str_fraction(int x, int n = 20) {
    stringstream res;
    pair<int, int> best(x, 1);
    for (int j = 1; j < n; ++j) {
        best = min(best, {mul(x, j), j});
        best = min(best, {mod - mul(x, j), -j});
    }
    if (best.second < 0) {
        best.first *= -1;
        best.second *= -1;
    }
    res << best.first << "/" << best.second;
    return res.str();
}

const int max_f = 2e5+10;

int f[max_f], rf[max_f];

void get_all_f() {
    f[0] = rf[0] = 1;
    for (int i = 1; i < max_f; ++i) {
        f[i] = mul(i, f[i - 1]);
    }
    rf[max_f - 1] = inv(f[max_f - 1]);
    for (int i = max_f - 2; i > 0; --i) {
        rf[i] = mul(i + 1, rf[i + 1]);
    }
}

int get_c(int n, int k) {
    if (n < k) {
        return 0;
    }
    return mul(f[n], mul(rf[k], rf[n - k]));
}

class Factorizer {
public:
    Factorizer(): generator(time(0)) {
        memset(d, 0, sizeof(d));
        for (int i = 2; i < max_p; ++i) {
            if (!d[i]) {
                d[i] = i;
                for (long long j = 1LL * i * i; j < max_p; j += i) {
                    if (!d[j]) {
                        d[j] = i;
                    }
                }
            }
        }
    }

    static long long mul(long long a, long long b, long long mod) {
        long long x = (long double) a * b / mod;
        long long y = (a * b - x * mod) % mod;
        return y < 0 ? y + mod : y;
    }

    static long long power(long long a, long long b, long long mod) {
        long long res = 1 % mod;
        while (b) {
            if (b % 2) {
                res = mul(res, a, mod);
            }
            b /= 2;
            a = mul(a, a, mod);
        }
        return res;
    }

    /* works for x <= 3.8 * 10^18
     * doesn't work 3825123056546413051
     */
    static bool is_prime(long long x) {
        for (int val : {2, 3, 5, 7, 11, 13, 17, 19, 23}) {
            if (x == val) {
                return true;
            }
            if (!miller_simple(x, val)) {
                return false;
            }
        }
        return true;
    }

    vector<long long> factorize(long long x) {
        vector<long long> res;
        factorize(x, res);
        sort(res.begin(), res.end());
        return res;
    }

    vector<pair<long long, int>> factorize_count(long long x) {
        vector<long long> res = factorize(x);
        vector<pair<long long, int>> v;
        for (int i = 0; i < res.size(); ) {
            int pos = i;
            while (i < res.size() && res[pos] == res[i]) {
                ++i;
            }
            v.push_back({res[pos], i - pos});
        }
        return v;
    }

    vector<long long> get_all_divisors(long long x, bool need_sort = false) {
        auto v = factorize_count(x);
        vector<long long> res;
        generate_all_divisors(0, 1, v, res);
        if (need_sort) {
            sort(res.begin(), res.end());
        }
        return res;
    }

private:
    static const int max_p = 1000000;

    int d[max_p];
    mt19937_64 generator;
    vector<long long> p;

    static bool miller_simple(long long a, long long b) {
        long long c = a - 1;
        int k = __builtin_ctzll(c);
        c >>= k;

        b = power(b, c, a);
        if (b == 1) {
            return true;
        }
        for (int i = 0; i < k; ++i) {
            if (b + 1 == a) {
                return true;
            }
            b = mul(b, b, a);
        }
        return false;
    }

    long long polard_rho(long long a) {
        const int max_v = 25;
        while (true) {
            long long p0 = generator() % a;
            long long p1 = p0;
            long long c = generator() % a;
            long long ans = 1;
            int t = 0;
            int pos = 0;
            vector<long long> arr{p1};

            while (true) {
                for (int i = 0; i < 2; ++i) {
                    p1 = mul(p1, p1, a) + c;
                    if (p1 >= a) {
                        p1 -= a;
                    }
                    arr.push_back(p1);
                }
                p0 = arr[pos++];
                if (p0 == p1) {
                    break;
                }
                ans = mul(ans, llabs(p1 - p0), a);
                if (ans == 0) {
                    return __gcd(llabs(p1 - p0), a);
                }
                if ((++t) == max_v) {
                    t = 0;
                    ans = __gcd(ans, a);
                    if (ans > 1 && ans < a) {
                        return ans;
                    }
                }
            }

            ans = __gcd(ans, a);
            if (ans > 1 && ans < a) {
                return ans;
            }
        }
    }

    void factorize(long long a, vector<long long> &res) {
        while (a > 1 && a < max_p) {
            res.push_back(d[a]);
            a /= d[a];
        }
        for (long long x : p) {
            if (a % x == 0) {
                a /= x;
                res.push_back(x);
            }
        }
        if (a < 2) {
            return;
        }
        if (is_prime(a)) {
            p.push_back(a);
            res.push_back(a);
        } else {
            long long d = polard_rho(a);
            assert(d > 1 && d < a);
            factorize(d, res);
            factorize(a / d, res);
        }
    }

    void generate_all_divisors(int pos, long long x, const vector<pair<long long, int>> &v, vector<long long> &res) {
        if (pos == v.size()) {
            res.push_back(x);
            return;
        }
        for (int i = 0; i <= v[pos].second; ++i) {
            generate_all_divisors(pos + 1, x, v, res);
            x *= v[pos].first;
        }
    }
};

Factorizer F;

int a[max_n];

const int max_d=6720;

vector<int> reb[max_d];

const int max_log = 42;

int dp[max_d][max_log];
int dp2[max_d][max_log];

int choose_a[max_n][max_log];

bool mark[max_n];

const bool debug=1;
mt19937 gen(47);

int main() {
//    freopen("input.txt", "r", stdin);
//    freopen("output.txt", "w", stdout);

    ios_base::sync_with_stdio(0);
    cin.tie(0);

    get_all_f();

    int n;
    ll m;
    if (debug){
        n=2e5;
        m=963761198400ll;
    }
    else{
        cin>>n>>m;
    }
    for (int i=0;i<n;i++){
        if (debug){
            a[i]=gen()%mod;
        }
        else{
            cin>>a[i];
        }
        inc(a[i],1);
    }
    vector<ll> divs = F.get_all_divisors(m,true);
    for (int i=0;i<len(divs);i++){
        for (int j=i+1;j<len(divs);j++){
            if (divs[j]%divs[i]==0){
                reb[i].pb(j);
                mark[j]=1;
            }
        }
    }
    dp[0][0]=1;
    for (int i=0;i<len(divs);i++){
        for (int j=0;j<max_log;j++){
            if (dp[i][j]==0){
                continue;
            }
            for (auto to:reb[i]){
                ll x=divs[to]/divs[i];
                inc(dp[to][j+1],1ll*dp[i][j]*(x-1)%md);
            }
        }
    }
    dp2[0][0]=1;
    for (int i=0;i<len(divs);i++){
        for (int j=0;j<max_log;j++){
            if (dp2[i][j]==0){
                continue;
            }
//            LOG("dp2",divs[i],j,dp2[i][j]);
            for (auto to:reb[i]){
                inc(dp2[to][j+1],dp2[i][j]);
            }
        }
    }
//    for (int i=0;i<len(divs);i++){
//        for (int j=1;j<max_log;j++){
//            inc(dp2[i][j],dp2[i][j-1]);
//        }
//    }
    choose_a[0][0]=1;
    for (int i=0;i<n;i++){
        for (int j=0;j<max_log;j++){
            if (choose_a[i][j]==0){
                continue;
            }
            inc(choose_a[i+1][j+1],choose_a[i][j]);
            inc(choose_a[i+1][j],1ll*choose_a[i][j]*a[i]%md);
        }
    }
//    vector<ll> primes;
//    for (int i=1;i<len(divs);i++){
//        if (!mark[i]){
//            primes.pb(divs[i]);
//        }
//    }
    int ans=0;
    for (int i=0;i<len(divs);i++){
//        int ways=0;
//        vector<int> p_cnt;
//        {
//            ll X=m/divs[i];
//            for (auto p:primes){
//                if (X%p==0){
//                    p_cnt.pb(0);
//                    while (X%p==0){
//                        p_cnt.back()++;
//                        X/=p;
//                    }
//                }
//            }
//            assert(X==1);
//        }
//        for (int k=0;k<min(max_log,n+1);k++){
//
//        }
        int rev_id=lower_bound(all(divs),m/divs[i])-divs.begin();
        for (int j=0;j<max_log && j<=n;j++){
            if (dp[i][j]==0){
                continue;
            }
            for (int k=0;k<max_log && j+k<=n;k++){
                int cur=1ll*choose_a[n][j]*dp[i][j]%md*dp2[rev_id][k]%md*get_c(n-j,k)%md;
//                LOG(divs[i],j,cur,choose_a[n][j],dp[i][j],dp2[rev_id][k],get_c(n-j,k));
                inc(ans,cur);
            }
        }
    }
    cout<<ans<<"\n";
}

详细

Test #1:

score: 0
Wrong Answer
time: 160ms
memory: 54876kb

input:

5 5
1 4
2 3
1 3
2 5
5 1

output:

649985096

result:

wrong answer Integer 649985096 violates the range [1, 2]