QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#121300 | #6675. DS Team Selection 2 | Denisov | WA | 7ms | 4636kb | C++20 | 10.9kb | 2023-07-07 21:20:42 | 2023-07-07 21:20:43 |
Judging History
answer
//#pragma GCC optimize("Ofast", "unroll-loops")
//#pragma GCC target("sse", "sse2", "sse3", "ssse3", "sse4")
#ifdef LOCAL
#include <iostream>
#include <cmath>
#include <algorithm>
#include <stdio.h>
#include <cstdint>
#include <cstring>
#include <string>
#include <cstdlib>
#include <vector>
#include <bitset>
#include <map>
#include <queue>
#include <ctime>
#include <stack>
#include <set>
#include <list>
#include <random>
#include <deque>
#include <functional>
#include <iomanip>
#include <sstream>
#include <fstream>
#include <complex>
#include <numeric>
#include <cassert>
#include <array>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <thread>
#else
#include <bits/stdc++.h>
#endif
#define all(a) a.begin(),a.end()
#define len(a) (int)(a.size())
#define mp make_pair
#define pb push_back
#define fir first
#define sec second
#define fi first
#define se second
using namespace std;
typedef pair<int, int> pii;
typedef long long ll;
typedef long double ld;
template<typename T>
inline bool umin(T &a, T b) {
if (b < a) {
a = b;
return true;
}
return false;
}
template<typename T>
inline bool umax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
#ifdef LOCAL
#define D for (bool _FLAG = true; _FLAG; _FLAG = false)
#define LOG(...) print(#__VA_ARGS__" ::", __VA_ARGS__) << endl
template <class ...Ts> auto &print(Ts ...ts) { return ((cerr << ts << " "), ...); }
#else
#define D while (false)
#define LOG(...)
#endif // LOCAL
//const int max_n = -1, inf = 1000111222;
const ld inf = 1e18;
struct line {
ll m, b; ld x;
ll val; bool isQuery;
line(ll _m = 0, ll _b = 0) :
m(_m), b(_b), val(0), x(-inf), isQuery(false) {}
ll eval(ll x) const { return m * x + b; }
bool parallel(const line &l) const { return m == l.m; }
ld intersect(const line &l) const {
return parallel(l) ? inf : 1.0 * (l.b - b) / (m - l.m);
}
bool operator < (const line &l) const {
if(l.isQuery) return x < l.val;
else return m < l.m;
}
};
struct convex_hull_trick {
/// max
set<line> hull;
typedef set<line> :: iterator iter;
bool cPrev(iter it) { return it != hull.begin(); }
bool cNext(iter it) { return it != hull.end() && next(it) != hull.end(); }
bool bad(const line &l1, const line &l2, const line &l3) {
return l1.intersect(l3) <= l1.intersect(l2);
}
bool bad(iter it) {
return cPrev(it) && cNext(it) && bad(*prev(it), *it, *next(it));
}
iter update(iter it) {
if(!cPrev(it)) return it;
ld x = it -> intersect(*prev(it));
line tmp(*it); tmp.x = x;
it = hull.erase(it);
return hull.insert(it, tmp);
}
void addLine(ll m, ll b) {
m *= -1;
b *= -1;
line l(m, b);
iter it = hull.lower_bound(l);
if(it != hull.end() && l.parallel(*it)) {
if(it -> b < b) it = hull.erase(it);
else return;
}
it = hull.insert(it, l);
if(bad(it)) return (void) hull.erase(it);
while(cPrev(it) && bad(prev(it))) hull.erase(prev(it));
while(cNext(it) && bad(next(it))) hull.erase(next(it));
it = update(it);
if(cPrev(it)) update(prev(it));
if(cNext(it)) update(next(it));
}
ll query(ll x) const {
if(hull.empty()) return -inf;
line q; q.val = x, q.isQuery = 1;
iter it = --hull.lower_bound(q);
return -it -> eval(x);
}
};
template <class T>
struct fenwick {
public:
int n;
vector <T> t; /// !!!
fenwick (int n) : n(n) {
t.assign(n, T(0));
}
inline void upd (int i, T x) {
for (; i < n; i = i | (i + 1)) t[i] += x;
}
inline T sum (int r) {
T ans = 0;
for (; r >= 0; r = (r & (r + 1)) - 1) ans += t[r];
return ans;
}
inline T sum (int l, int r) {
if (l > r) return T(0); /// !!!
return sum(r) - sum(l - 1);
}
};
const ll linf = inf * 1ll * inf;
struct node {
ll ans, push, k, b, cnt, m, sum_b, sum_k;
/// not existing node
node () : ans(0), push(-linf), cnt(0), k(0), b(0), m(0), sum_b(0), sum_k(0) {}
node (ll x, int id, int m) : ans(x), k(id), b(x - m * 1ll * id), push(-linf), m(m), cnt(1), sum_k(id), sum_b(x - m * 1ll * id) {
/// set to not existing node if needed
}
inline ll val (ll x) const {
if (k == 0) {
return -linf;
}
return k * x + b;
}
};
inline node pull (node a, node b) {
node res;
res.ans = a.ans + b.ans;
res.cnt = a.cnt + b.cnt;
res.sum_b = a.sum_b + b.sum_b;
res.sum_k = a.sum_k + b.sum_k;
if (b.k) {
res.k = b.k;
res.b = b.b;
}
else {
res.k = a.k;
res.b = a.b;
}
return res;
}
struct segment_tree {
vector <node> t;
int n;
segment_tree () {}
inline void build (int v, int tl, int tr) {
if (tl == tr) {
t[v] = node(); /// think
return;
}
int tm = (tl + tr) >> 1;
build(v << 1, tl, tm);
build(v << 1 | 1, tm + 1, tr);
t[v] = pull(t[v << 1], t[v << 1 | 1]);
}
segment_tree (int n) : n(n) {
t.resize(4 * n);
build(1, 0, n - 1);
}
inline void push (int v, int tl, int tr) {
if (tl != tr && t[v].push != -linf) {
t[v << 1].ans = t[v].push * t[v << 1].cnt;
t[v << 1 | 1].ans = t[v].push * t[v << 1 | 1].cnt;
t[v << 1].sum_b = t[v].push * t[v << 1].cnt - t[v << 1].sum_k * t[v].m;
t[v << 1 | 1].sum_b = t[v].push * t[v << 1 | 1].cnt - t[v << 1 | 1].sum_k * t[v].m;
t[v << 1].b = t[v].push - t[v].m * t[v << 1].k;
t[v << 1 | 1].b = t[v].push - t[v].m * t[v << 1 | 1].k;
t[v << 1].push = t[v].push;
t[v << 1 | 1].push = t[v].push;
t[v << 1].m = t[v].m;
t[v << 1 | 1].m = t[v].m;
t[v].push = -linf;
}
}
inline void update (int v, int tl, int tr, int l, int r, int x) { /// think
push(v, tl, tr);
if (l > r) return;
if (tl == l && tr == r) { /// think
// t[v]
push(v, tl, tr);
return;
}
int tm = (tl + tr) >> 1;
update(v << 1, tl, tm, l, min(r, tm), x);
update(v << 1 | 1, tm + 1, tr, max(tm + 1, l), r, x);
t[v] = pull(t[v << 1], t[v << 1 | 1]);
}
inline void update1 (int v, int tl, int tr, int pos, ll x, int cur_k) { /// think
push(v, tl, tr);
if (tl == tr) {
t[v] = node(x, tr + 1, cur_k);
return;
}
int tm = (tl + tr) >> 1;
if (pos <= tm) {
update1(v << 1, tl, tm, pos, x, cur_k);
}
else {
update1(v << 1 | 1, tm + 1, tr, pos, x, cur_k);
}
t[v] = pull(t[v << 1], t[v << 1 | 1]);
}
inline node query (int v, int tl, int tr, int l, int r) {
push(v, tl, tr);
if (l > r) return node();
if (tl == l && tr == r) {
return t[v];
}
int tm = (tl + tr) >> 1;
return pull(query(v << 1, tl, tm, l, min(r, tm)), query(v << 1 | 1, tm + 1, tr, max(tm + 1, l), r));
}
inline void upd (int l, int r, int x) {
update(1, 0, n - 1, l, r, x);
}
inline void upd1 (int pos, ll x, int cur_k) {
update1(1, 0, n - 1, pos, x, cur_k);
}
inline node get (int l, int r) {
return query(1, 0, n - 1, l, r);
}
inline void make_push (int v, int tl, int tr, ll val, int m) {
t[v].ans = t[v].cnt * val;
t[v].b = val - t[v].k * m;
t[v].sum_b = val * t[v].cnt - t[v].sum_k * m;
t[v].push = val;
t[v].m = m;
push(v, tl, tr);
}
inline void go (int v, int tl, int tr, ll val, int m) {
push(v, tl, tr);
if (!t[v].k) {
return;
}
if (tl == tr) {
if (t[v].val(m) > val) {
make_push(v, tl, tr, val, m);
}
return;
}
int tm = (tl + tr) >> 1;
push(v << 1, tl, tm);
push(v << 1 | 1, tm + 1, tr);
if (t[v << 1].val(m) > val) {
make_push(v << 1 | 1, tm + 1, tr, val, m);
go(v << 1, tl, tm, val, m);
}
else {
go(v << 1 | 1, tm + 1, tr, val, m);
}
t[v] = pull(t[v << 1], t[v << 1 | 1]);
}
};
inline ll sum (ll a0, ll n) {
return ((2 * a0 + n - 1) * n) / 2ll;
}
int main() {
// freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int n, q;
cin >> n >> q;
vector <ll> a(n);
for (auto &i : a) cin >> i;
vector <int> cnt(n), t(n), l(n), r(n);
for (int i = 0; i < q; i++) {
cin >> t[i];
if (i) {
cnt[i] = cnt[i - 1];
}
if (t[i] == 1) {
cin >> r[i];
}
else if (t[i] == 3) {
cin >> l[i] >> r[i];
--l[i], --r[i];
}
else {
++cnt[i];
}
}
vector <int> L(n, 0), R(n, q);
while (true) {
bool ok = false;
vector <vector <int> > have(q + 1);
for (int i = 0; i < n; i++) {
if (L[i] != R[i]) {
int mid = (L[i] + R[i]) >> 1;
have[mid].pb(i);
ok = true;
}
}
if (!ok) {
break;
}
convex_hull_trick cht;
for (int i = 0; i < q; i++) {
if (t[i] == 1) {
cht.addLine(-cnt[i], r[i]);
}
for (int id : have[i]) {
if (!cht.hull.empty() && cht.query(id + 1) <= a[id]) {
R[id] = i;
}
else {
L[id] = i + 1;
}
}
}
}
vector <vector <int> > have(q);
fenwick <ll> T(n);
for (int i = 0; i < n; i++) {
if (R[i] < q) {
have[R[i]].pb(i);
}
T.upd(i, a[i]);
}
segment_tree tr(n);
for (int i = 0; i < q; i++) {
if (t[i] == 1) {
tr.go(1, 0, n - 1, r[i], cnt[i]);
for (int id : have[i]) {
tr.upd1(id, r[i], cnt[i]);
T.upd(id, -a[id]);
}
}
else if (t[i] == 2) {
}
else {
node res = tr.get(l[i], r[i]);
ll ans = T.sum(l[i], r[i]) + cnt[i] * sum(l[i] + 1, r[i] - l[i] + 1) + res.sum_b;
cout << ans << '\n';
}
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3376kb
input:
13 11 6 14 14 6 3 6 4 13 10 3 12 5 11 1 2 2 2 2 1 11 3 4 6 2 1 6 2 1 9 3 2 13
output:
33 107
result:
ok 2 number(s): "33 107"
Test #2:
score: 0
Accepted
time: 7ms
memory: 4596kb
input:
5000 5000 29940 259997 53132 912489 608312 594283 432259 344137 889466 383028 320097 337418 571199 372832 563110 542407 133378 998389 238387 120880 477310 634888 191990 133585 935315 558139 141724 893331 190118 991968 843042 384930 935256 891482 123419 91431 955722 376987 197566 106433 234494 645967...
output:
512185934 455189773 121665669 408693244 291779262 45671866 242375008 302245547 222004631 41963113 343434445 347127029 183849524 2144625 278637672 220461451 20719635 108759503 22099550 34631220 55848925 92362584 36949030 86469096 43509864 50829332 1334865 76069109 114623436 13564322 79974466 15230088...
result:
ok 1671 numbers
Test #3:
score: -100
Wrong Answer
time: 4ms
memory: 4636kb
input:
5000 5000 754848159362 799142221874 945332296572 929342054343 220343371940 207059247564 870301066785 609144766745 830351478389 198801101804 768950635554 592202774571 800496073014 730985048260 581401590014 934021096780 587980626010 77068543347 206074783770 390850923112 122794404396 281461236458 11092...
output:
2147483648 2147483649 2147483650 2147483651 2147483652 2147483653 2147483654 2147483655 2147483656 2147483657 2147483658 2147483659 2147483660 2147483661 2147483662 2147483663 2147483664 2147483665 2147483666 2147483667 2147483668 2147483669 2147483670 2147483671 2147483672 2147483673 2147483674 214...
result:
wrong answer 1st numbers differ - expected: '116508179221533', found: '2147483648'