QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#121300#6675. DS Team Selection 2DenisovWA 7ms4636kbC++2010.9kb2023-07-07 21:20:422023-07-07 21:20:43

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-07-07 21:20:43]
  • 评测
  • 测评结果:WA
  • 用时:7ms
  • 内存:4636kb
  • [2023-07-07 21:20:42]
  • 提交

answer

//#pragma GCC optimize("Ofast", "unroll-loops")
//#pragma GCC target("sse", "sse2", "sse3", "ssse3", "sse4")
#ifdef LOCAL
#include <iostream>
#include <cmath>
#include <algorithm>
#include <stdio.h>
#include <cstdint>
#include <cstring>
#include <string>
#include <cstdlib>
#include <vector>
#include <bitset>
#include <map>
#include <queue>
#include <ctime>
#include <stack>
#include <set>
#include <list>
#include <random>
#include <deque>
#include <functional>
#include <iomanip>
#include <sstream>
#include <fstream>
#include <complex>
#include <numeric>
#include <cassert>
#include <array>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <thread>
#else
#include <bits/stdc++.h>
#endif

#define all(a) a.begin(),a.end()
#define len(a) (int)(a.size())
#define mp make_pair
#define pb push_back
#define fir first
#define sec second
#define fi first
#define se second

using namespace std;

typedef pair<int, int> pii;
typedef long long ll;
typedef long double ld;

template<typename T>
inline bool umin(T &a, T b) {
    if (b < a) {
        a = b;
        return true;
    }
    return false;
}

template<typename T>
inline bool umax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

#ifdef LOCAL
#define D for (bool _FLAG = true; _FLAG; _FLAG = false)
#define LOG(...) print(#__VA_ARGS__" ::", __VA_ARGS__) << endl
template <class ...Ts> auto &print(Ts ...ts) { return ((cerr << ts << " "), ...); }
#else
#define D while (false)
#define LOG(...)
#endif // LOCAL

//const int max_n = -1, inf = 1000111222;


const ld inf = 1e18;
struct line {

    ll m, b; ld x;
    ll val; bool isQuery;
    line(ll _m = 0, ll _b = 0) :
        m(_m), b(_b), val(0), x(-inf), isQuery(false) {}

    ll eval(ll x) const { return m * x + b;    }
    bool parallel(const line &l) const { return m == l.m; }
    ld intersect(const line &l) const {
        return parallel(l) ? inf : 1.0 * (l.b - b) / (m - l.m);
    }
    bool operator < (const line &l) const {
        if(l.isQuery) return x < l.val;
        else return m < l.m;
    }
};
struct convex_hull_trick {
/// max
    set<line> hull;
    typedef set<line> :: iterator iter;

    bool cPrev(iter it) { return it != hull.begin(); }
    bool cNext(iter it) { return it != hull.end() && next(it) != hull.end(); }

    bool bad(const line &l1, const line &l2, const line &l3) {
        return l1.intersect(l3) <= l1.intersect(l2);
    }
    bool bad(iter it) {
        return cPrev(it) && cNext(it) && bad(*prev(it), *it, *next(it));
    }

    iter update(iter it) {
        if(!cPrev(it)) return it;
        ld x = it -> intersect(*prev(it));
        line tmp(*it); tmp.x = x;
        it = hull.erase(it);
        return hull.insert(it, tmp);
    }

    void addLine(ll m, ll b) {
        m *= -1;
        b *= -1;
        line l(m, b);
        iter it = hull.lower_bound(l);
        if(it != hull.end() && l.parallel(*it)) {
            if(it -> b < b) it = hull.erase(it);
            else return;
        }

        it = hull.insert(it, l);
        if(bad(it)) return (void) hull.erase(it);

        while(cPrev(it) && bad(prev(it))) hull.erase(prev(it));
        while(cNext(it) && bad(next(it))) hull.erase(next(it));

        it = update(it);
        if(cPrev(it)) update(prev(it));
        if(cNext(it)) update(next(it));
    }

    ll query(ll x) const {
        if(hull.empty()) return -inf;
        line q; q.val = x, q.isQuery = 1;
        iter it = --hull.lower_bound(q);
        return -it -> eval(x);
    }
};


template <class T>
struct fenwick {
public:
    int n;
    vector <T> t; /// !!!


    fenwick (int n) : n(n) {
        t.assign(n, T(0));
    }

    inline void upd (int i, T x) {
        for (; i < n; i = i | (i + 1)) t[i] += x;
    }

    inline T sum (int r) {
        T ans = 0;
        for (; r >= 0; r = (r & (r + 1)) - 1) ans += t[r];
        return ans;
    }

    inline T sum (int l, int r) {
        if (l > r) return T(0); /// !!!
        return sum(r) - sum(l - 1);
    }
};

const ll linf = inf * 1ll * inf;

struct node {

    ll ans, push, k, b, cnt, m, sum_b, sum_k;

    /// not existing node
    node () : ans(0), push(-linf), cnt(0), k(0), b(0), m(0), sum_b(0), sum_k(0)  {}

    node (ll x, int id, int m) : ans(x), k(id), b(x - m * 1ll * id), push(-linf), m(m), cnt(1), sum_k(id), sum_b(x - m * 1ll * id)  {
        /// set to not existing node if needed

    }

    inline ll val (ll x) const {
        if (k == 0) {
            return -linf;
        }
        return k * x + b;
    }
};



inline node pull (node a, node b) {
    node res;
    res.ans = a.ans + b.ans;
    res.cnt = a.cnt + b.cnt;
    res.sum_b = a.sum_b + b.sum_b;
    res.sum_k = a.sum_k + b.sum_k;
    if (b.k) {
        res.k = b.k;
        res.b = b.b;
    }
    else {
        res.k = a.k;
        res.b = a.b;
    }
    return res;
}

struct segment_tree {
    vector <node> t;
    int n;

    segment_tree () {}

    inline void build (int v, int tl, int tr) {
        if (tl == tr) {
            t[v] = node(); /// think
            return;
        }
        int tm = (tl + tr) >> 1;
        build(v << 1, tl, tm);
        build(v << 1 | 1, tm + 1, tr);
        t[v] = pull(t[v << 1], t[v << 1 | 1]);
    }

    segment_tree (int n) : n(n) {
        t.resize(4 * n);
        build(1, 0, n - 1);
    }

    inline void push (int v, int tl, int tr) {
        if (tl != tr && t[v].push != -linf) {
            t[v << 1].ans = t[v].push * t[v << 1].cnt;
            t[v << 1 | 1].ans = t[v].push * t[v << 1 | 1].cnt;

            t[v << 1].sum_b = t[v].push * t[v << 1].cnt - t[v << 1].sum_k * t[v].m;
            t[v << 1 | 1].sum_b = t[v].push * t[v << 1 | 1].cnt - t[v << 1 | 1].sum_k * t[v].m;

            t[v << 1].b = t[v].push - t[v].m * t[v << 1].k;
            t[v << 1 | 1].b = t[v].push - t[v].m * t[v << 1 | 1].k;

            t[v << 1].push = t[v].push;
            t[v << 1 | 1].push = t[v].push;

            t[v << 1].m = t[v].m;
            t[v << 1 | 1].m = t[v].m;

            t[v].push = -linf;
        }
    }

    inline void update (int v, int tl, int tr, int l, int r, int x) { /// think
        push(v, tl, tr);
        if (l > r) return;
        if (tl == l && tr == r) { /// think
            // t[v]
            push(v, tl, tr);
            return;
        }
        int tm = (tl + tr) >> 1;
        update(v << 1, tl, tm, l, min(r, tm), x);
        update(v << 1 | 1, tm + 1, tr, max(tm + 1, l), r, x);
        t[v] = pull(t[v << 1], t[v << 1 | 1]);
    }

    inline void update1 (int v, int tl, int tr, int pos, ll x, int cur_k) { /// think
        push(v, tl, tr);
        if (tl == tr) {
            t[v] = node(x, tr + 1, cur_k);
            return;
        }
        int tm = (tl + tr) >> 1;
        if (pos <= tm) {
            update1(v << 1, tl, tm, pos, x, cur_k);
        }
        else {
            update1(v << 1 | 1, tm + 1, tr, pos, x, cur_k);
        }
        t[v] = pull(t[v << 1], t[v << 1 | 1]);
    }

    inline node query (int v, int tl, int tr, int l, int r) {
        push(v, tl, tr);
        if (l > r) return node();
        if (tl == l && tr == r) {
            return t[v];
        }
        int tm = (tl + tr) >> 1;
        return pull(query(v << 1, tl, tm, l, min(r, tm)), query(v << 1 | 1, tm + 1, tr, max(tm + 1, l), r));
    }

    inline void upd (int l, int r, int x) {
        update(1, 0, n - 1, l, r, x);
    }

    inline void upd1 (int pos, ll x, int cur_k) {
        update1(1, 0, n - 1, pos, x, cur_k);
    }

    inline node get (int l, int r) {
        return query(1, 0, n - 1, l, r);
    }

    inline void make_push (int v, int tl, int tr, ll val, int m) {
        t[v].ans = t[v].cnt * val;
        t[v].b = val - t[v].k * m;
        t[v].sum_b = val * t[v].cnt - t[v].sum_k * m;
        t[v].push = val;
        t[v].m = m;
        push(v, tl, tr);
    }

    inline void go (int v, int tl, int tr, ll val, int m) {
        push(v, tl, tr);
        if (!t[v].k) {
            return;
        }
        if (tl == tr) {
            if (t[v].val(m) > val) {
                make_push(v, tl, tr, val, m);
            }
            return;
        }
        int tm = (tl + tr) >> 1;
        push(v << 1, tl, tm);
        push(v << 1 | 1, tm + 1, tr);
        if (t[v << 1].val(m) > val) {
            make_push(v << 1 | 1, tm + 1, tr, val, m);
            go(v << 1, tl, tm, val, m);
        }
        else {
            go(v << 1 | 1, tm + 1, tr, val, m);
        }
        t[v] = pull(t[v << 1], t[v << 1 | 1]);
    }
};

inline ll sum (ll a0, ll n) {
    return ((2 * a0 + n - 1) * n) / 2ll;
}

int main() {
//    freopen("input.txt", "r", stdin);
//    freopen("output.txt", "w", stdout);

    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);


    int n, q;
    cin >> n >> q;
    vector <ll> a(n);
    for (auto &i : a) cin >> i;
    vector <int> cnt(n), t(n), l(n), r(n);
    for (int i = 0; i < q; i++) {
        cin >> t[i];
        if (i) {
            cnt[i] = cnt[i - 1];
        }
        if (t[i] == 1) {
            cin >> r[i];
        }
        else if (t[i] == 3) {
            cin >> l[i] >> r[i];
            --l[i], --r[i];
        }
        else {
            ++cnt[i];
        }
    }
    vector <int> L(n, 0), R(n, q);
    while (true) {
        bool ok = false;
        vector <vector <int> > have(q + 1);
        for (int i = 0; i < n; i++) {
            if (L[i] != R[i]) {
                int mid = (L[i] + R[i]) >> 1;
                have[mid].pb(i);
                ok = true;
            }
        }
        if (!ok) {
            break;
        }
        convex_hull_trick cht;
        for (int i = 0; i < q; i++) {
            if (t[i] == 1) {
                cht.addLine(-cnt[i], r[i]);
            }
            for (int id : have[i]) {
                if (!cht.hull.empty() && cht.query(id + 1) <= a[id]) {
                    R[id] = i;
                }
                else {
                    L[id] = i + 1;
                }
            }
        }
    }
    vector <vector <int> > have(q);
    fenwick <ll> T(n);
    for (int i = 0; i < n; i++) {
        if (R[i] < q) {
            have[R[i]].pb(i);
        }
        T.upd(i, a[i]);
    }
    segment_tree tr(n);
    for (int i = 0; i < q; i++) {
        if (t[i] == 1) {
            tr.go(1, 0, n - 1, r[i], cnt[i]);
            for (int id : have[i]) {
                tr.upd1(id, r[i], cnt[i]);
                T.upd(id, -a[id]);
            }
        }
        else if (t[i] == 2) {

        }
        else {
            node res = tr.get(l[i], r[i]);
            ll ans = T.sum(l[i], r[i]) + cnt[i] * sum(l[i] + 1, r[i] - l[i] + 1) + res.sum_b;
            cout << ans << '\n';
        }
    }
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3376kb

input:

13 11
6 14 14 6 3 6 4 13 10 3 12 5 11
1 2
2
2
2
1 11
3 4 6
2
1 6
2
1 9
3 2 13

output:

33
107

result:

ok 2 number(s): "33 107"

Test #2:

score: 0
Accepted
time: 7ms
memory: 4596kb

input:

5000 5000
29940 259997 53132 912489 608312 594283 432259 344137 889466 383028 320097 337418 571199 372832 563110 542407 133378 998389 238387 120880 477310 634888 191990 133585 935315 558139 141724 893331 190118 991968 843042 384930 935256 891482 123419 91431 955722 376987 197566 106433 234494 645967...

output:

512185934
455189773
121665669
408693244
291779262
45671866
242375008
302245547
222004631
41963113
343434445
347127029
183849524
2144625
278637672
220461451
20719635
108759503
22099550
34631220
55848925
92362584
36949030
86469096
43509864
50829332
1334865
76069109
114623436
13564322
79974466
15230088...

result:

ok 1671 numbers

Test #3:

score: -100
Wrong Answer
time: 4ms
memory: 4636kb

input:

5000 5000
754848159362 799142221874 945332296572 929342054343 220343371940 207059247564 870301066785 609144766745 830351478389 198801101804 768950635554 592202774571 800496073014 730985048260 581401590014 934021096780 587980626010 77068543347 206074783770 390850923112 122794404396 281461236458 11092...

output:

2147483648
2147483649
2147483650
2147483651
2147483652
2147483653
2147483654
2147483655
2147483656
2147483657
2147483658
2147483659
2147483660
2147483661
2147483662
2147483663
2147483664
2147483665
2147483666
2147483667
2147483668
2147483669
2147483670
2147483671
2147483672
2147483673
2147483674
214...

result:

wrong answer 1st numbers differ - expected: '116508179221533', found: '2147483648'