QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#116380#5667. Meeting Placescjj490168650WA 2ms4436kbC++2017.8kb2023-06-28 16:58:392023-06-28 16:58:41

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-06-28 16:58:41]
  • 评测
  • 测评结果:WA
  • 用时:2ms
  • 内存:4436kb
  • [2023-06-28 16:58:39]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

using point_t=long double;  //全局数据类型,可修改为 long long 等

constexpr point_t eps=1e-8;
constexpr long double PI=3.1415926535897932384l;

// 点与向量
template<typename T> struct point
{
    T x,y;

    bool operator==(const point &a) const {return (abs(x-a.x)<=eps && abs(y-a.y)<=eps);}
    bool operator<(const point &a) const {if (abs(x-a.x)<=eps) return y<a.y-eps; return x<a.x-eps;}
    bool operator>(const point &a) const {return !(*this<a || *this==a);}
    point operator+(const point &a) const {return {x+a.x,y+a.y};}
    point operator-(const point &a) const {return {x-a.x,y-a.y};}
    point operator-() const {return {-x,-y};}
    point operator*(const T k) const {return {k*x,k*y};}
    point operator/(const T k) const {return {x/k,y/k};}
    T operator*(const point &a) const {return x*a.x+y*a.y;}  // 点积
    T operator^(const point &a) const {return x*a.y-y*a.x;}  // 叉积,注意优先级
    int toleft(const point &a) const {const auto t=(*this)^a; return (t>eps)-(t<-eps);}  // to-left 测试
    T len2() const {return (*this)*(*this);}  // 向量长度的平方
    T dis2(const point &a) const {return (a-(*this)).len2();}  // 两点距离的平方

    // 涉及浮点数
    long double len() const {return sqrtl(len2());}  // 向量长度
    long double dis(const point &a) const {return sqrtl(dis2(a));}  // 两点距离
    long double ang(const point &a) const {return acosl(max(-1.0l,min(1.0l,((*this)*a)/(len()*a.len()))));}  // 向量夹角
    point rot(const long double rad) const {return {x*cos(rad)-y*sin(rad),x*sin(rad)+y*cos(rad)};}  // 逆时针旋转(给定角度)
    point rot(const long double cosr,const long double sinr) const {return {x*cosr-y*sinr,x*sinr+y*cosr};}  // 逆时针旋转(给定角度的正弦与余弦)
};

using Point=point<point_t>;

// 极角排序
struct argcmp
{
    bool operator()(const Point &a,const Point &b) const
    {
        const auto quad=[](const Point &a)
        {
            if (a.y<-eps) return 1;
            if (a.y>eps) return 4;
            if (a.x<-eps) return 5;
            if (a.x>eps) return 3;
            return 2;
        };
        const int qa=quad(a),qb=quad(b);
        if (qa!=qb) return qa<qb;
        const auto t=a^b;
        // if (abs(t)<=eps) return a*a<b*b-eps;  // 不同长度的向量需要分开
        return t>eps;
    }
};

// 直线
template<typename T> struct line
{
    point<T> p,v;  // p 为直线上一点,v 为方向向量

    bool operator==(const line &a) const {return v.toleft(a.v)==0 && v.toleft(p-a.p)==0;}
    int toleft(const point<T> &a) const {return v.toleft(a-p);}  // to-left 测试
    bool operator<(const line &a) const  // 半平面交算法定义的排序
    {
        if (abs(v^a.v)<=eps && v*a.v>=-eps) return toleft(a.p)==-1;
        return argcmp()(v,a.v);
    }

    // 涉及浮点数
    point<T> inter(const line &a) const {return p+v*((a.v^(p-a.p))/(v^a.v));}  // 直线交点
    long double dis(const point<T> &a) const {return abs(v^(a-p))/v.len();}  // 点到直线距离
    point<T> proj(const point<T> &a) const {return p+v*((v*(a-p))/(v*v));}  // 点在直线上的投影
};

using Line=line<point_t>;

//线段
template<typename T> struct segment
{
    point<T> a,b;

    bool operator<(const segment &s) const {return make_pair(a,b)<make_pair(s.a,s.b);}

    // 判定性函数建议在整数域使用

    // 判断点是否在线段上
    // -1 点在线段端点 | 0 点不在线段上 | 1 点严格在线段上
    int is_on(const point<T> &p) const  
    {
        if (p==a || p==b) return -1;
        return (p-a).toleft(p-b)==0 && (p-a)*(p-b)<-eps;
    }

    // 判断线段直线是否相交
    // -1 直线经过线段端点 | 0 线段和直线不相交 | 1 线段和直线严格相交
    int is_inter(const line<T> &l) const
    {
        if (l.toleft(a)==0 || l.toleft(b)==0) return -1;
        return l.toleft(a)!=l.toleft(b);
    }
    
    // 判断两线段是否相交
    // -1 在某一线段端点处相交 | 0 两线段不相交 | 1 两线段严格相交
    int is_inter(const segment<T> &s) const
    {
        if (is_on(s.a) || is_on(s.b) || s.is_on(a) || s.is_on(b)) return -1;
        const line<T> l{a,b-a},ls{s.a,s.b-s.a};
        return l.toleft(s.a)*l.toleft(s.b)==-1 && ls.toleft(a)*ls.toleft(b)==-1;
    }

    // 点到线段距离
    long double dis(const point<T> &p) const
    {
        if ((p-a)*(b-a)<-eps || (p-b)*(a-b)<-eps) return min(p.dis(a),p.dis(b));
        const line<T> l{a,b-a};
        return l.dis(p);
    }

    // 两线段间距离
    long double dis(const segment<T> &s) const
    {
        if (is_inter(s)) return 0;
        return min({dis(s.a),dis(s.b),s.dis(a),s.dis(b)});
    }
};

using Segment=segment<point_t>;

// 多边形
template<typename T> struct polygon
{
    vector<point<T>> p;  // 以逆时针顺序存储

    size_t nxt(const size_t i) const {return i==p.size()-1?0:i+1;}
    size_t pre(const size_t i) const {return i==0?p.size()-1:i-1;}
    
    // 回转数
    // 返回值第一项表示点是否在多边形边上
    // 对于狭义多边形,回转数为 0 表示点在多边形外,否则点在多边形内
    pair<bool,int> winding(const point<T> &a) const
    {
        int cnt=0;
        for (size_t i=0;i<p.size();i++)
        {
            const point<T> u=p[i],v=p[nxt(i)];
            if (abs((a-u)^(a-v))<=eps && (a-u)*(a-v)<=eps) return {true,0};
            if (abs(u.y-v.y)<=eps) continue;
            const Line uv={u,v-u};
            if (u.y<v.y-eps && uv.toleft(a)<=0) continue;
            if (u.y>v.y+eps && uv.toleft(a)>=0) continue;
            if (u.y<a.y-eps && v.y>=a.y-eps) cnt++;
            if (u.y>=a.y-eps && v.y<a.y-eps) cnt--;
        }
        return {false,cnt};
    }

    // 多边形面积的两倍
    // 可用于判断点的存储顺序是顺时针或逆时针
    T area() const
    {
        T sum=0;
        for (size_t i=0;i<p.size();i++) sum+=p[i]^p[nxt(i)];
        return sum;
    }

    // 多边形的周长
    long double circ() const
    {
        long double sum=0;
        for (size_t i=0;i<p.size();i++) sum+=p[i].dis(p[nxt(i)]);
        return sum;
    }
};

using Polygon=polygon<point_t>;

//凸多边形
template<typename T> struct convex: polygon<T>
{
    // 闵可夫斯基和
    convex operator+(const convex &c) const  
    {
        const auto &p=this->p;
        vector<Segment> e1(p.size()),e2(c.p.size()),edge(p.size()+c.p.size());
        vector<point<T>> res; res.reserve(p.size()+c.p.size());
        const auto cmp=[](const Segment &u,const Segment &v) {return argcmp()(u.b-u.a,v.b-v.a);};
        for (size_t i=0;i<p.size();i++) e1[i]={p[i],p[this->nxt(i)]};
        for (size_t i=0;i<c.p.size();i++) e2[i]={c.p[i],c.p[c.nxt(i)]};
        rotate(e1.begin(),min_element(e1.begin(),e1.end(),cmp),e1.end());
        rotate(e2.begin(),min_element(e2.begin(),e2.end(),cmp),e2.end());
        merge(e1.begin(),e1.end(),e2.begin(),e2.end(),edge.begin(),cmp);
        const auto check=[](const vector<point<T>> &res,const point<T> &u)
        {
            const auto back1=res.back(),back2=*prev(res.end(),2);
            return (back1-back2).toleft(u-back1)==0 && (back1-back2)*(u-back1)>=-eps;
        };
        auto u=e1[0].a+e2[0].a;
        for (const auto &v:edge)
        {
            while (res.size()>1 && check(res,u)) res.pop_back();
            res.push_back(u);
            u=u+v.b-v.a;
        }
        if (res.size()>1 && check(res,res[0])) res.pop_back();
        return {res};
    }

    // 旋转卡壳
    // func 为更新答案的函数,可以根据题目调整位置
    template<typename F> void rotcaliper(const F &func) const
    {
        const auto &p=this->p;
        const auto area=[](const point<T> &u,const point<T> &v,const point<T> &w){return (w-u)^(w-v);};
        for (size_t i=0,j=1;i<p.size();i++)
        {
            const auto nxti=this->nxt(i);
            func(p[i],p[nxti],p[j]);
            while (area(p[this->nxt(j)],p[i],p[nxti])>=area(p[j],p[i],p[nxti]))
            {
                j=this->nxt(j);
                func(p[i],p[nxti],p[j]);
            }
        }
    }

    // 凸多边形的直径的平方
    T diameter2() const
    {
        const auto &p=this->p;
        if (p.size()==1) return 0;
        if (p.size()==2) return p[0].dis2(p[1]);
        T ans=0;
        auto func=[&](const point<T> &u,const point<T> &v,const point<T> &w){ans=max({ans,w.dis2(u),w.dis2(v)});};
        rotcaliper(func);
        return ans;
    }
    
    // 判断点是否在凸多边形内
    // 复杂度 O(logn)
    // -1 点在多边形边上 | 0 点在多边形外 | 1 点在多边形内
    int is_in(const point<T> &a) const
    {
        const auto &p=this->p;
        if (p.size()==1) return a==p[0]?-1:0;
        if (p.size()==2) return segment<T>{p[0],p[1]}.is_on(a)?-1:0; 
        if (a==p[0]) return -1;
        if ((p[1]-p[0]).toleft(a-p[0])==-1 || (p.back()-p[0]).toleft(a-p[0])==1) return 0;
        const auto cmp=[&](const Point &u,const Point &v){return (u-p[0]).toleft(v-p[0])==1;};
        const size_t i=lower_bound(p.begin()+1,p.end(),a,cmp)-p.begin();
        if (i==1) return segment<T>{p[0],p[i]}.is_on(a)?-1:0;
        if (i==p.size()-1 && segment<T>{p[0],p[i]}.is_on(a)) return -1;
        if (segment<T>{p[i-1],p[i]}.is_on(a)) return -1;
        return (p[i]-p[i-1]).toleft(a-p[i-1])>0;
    }

    // 凸多边形关于某一方向的极点
    // 复杂度 O(logn)
    // 参考资料:https://codeforces.com/blog/entry/48868
    template<typename F> size_t extreme(const F &dir) const
    {
        const auto &p=this->p;
        const auto check=[&](const size_t i){return dir(p[i]).toleft(p[this->nxt(i)]-p[i])>=0;};
        const auto dir0=dir(p[0]); const auto check0=check(0);
        if (!check0 && check(p.size()-1)) return 0;
        const auto cmp=[&](const Point &v)
        {
            const size_t vi=&v-p.data();
            if (vi==0) return 1;
            const auto checkv=check(vi);
            const auto t=dir0.toleft(v-p[0]);
            if (vi==1 && checkv==check0 && t==0) return 1;
            return checkv^(checkv==check0 && t<=0);
        };
        return partition_point(p.begin(),p.end(),cmp)-p.begin();
    }

    // 过凸多边形外一点求凸多边形的切线,返回切点下标
    // 复杂度 O(logn)
    // 必须保证点在多边形外
    pair<size_t,size_t> tangent(const point<T> &a) const
    {
        const size_t i=extreme([&](const point<T> &u){return u-a;});
        const size_t j=extreme([&](const point<T> &u){return a-u;});
        return {i,j};
    }

    // 求平行于给定直线的凸多边形的切线,返回切点下标
    // 复杂度 O(logn)
    pair<size_t,size_t> tangent(const line<T> &a) const
    {
        const size_t i=extreme([&](...){return a.v;});
        const size_t j=extreme([&](...){return -a.v;});
        return {i,j};
    }
};

using Convex=convex<point_t>;

// 圆
struct Circle
{
    Point c;
    long double r;

    bool operator==(const Circle &a) const {return c==a.c && abs(r-a.r)<=eps;}
    long double circ() const {return 2*PI*r;}  // 周长
    long double area() const {return PI*r*r;}  // 面积

    // 点与圆的关系
    // -1 圆上 | 0 圆外 | 1 圆内
    int is_in(const Point &p) const {const long double d=p.dis(c); return abs(d-r)<=eps?-1:d<r-eps;}

    // 直线与圆关系
    // 0 相离 | 1 相切 | 2 相交
    int relation(const Line &l) const
    {
        const long double d=l.dis(c);
        if (d>r+eps) return 0;
        if (abs(d-r)<=eps) return 1;
        return 2;
    }

    // 圆与圆关系
    // -1 相同 | 0 相离 | 1 外切 | 2 相交 | 3 内切 | 4 内含
    int relation(const Circle &a) const
    {
        if (*this==a) return -1;
        const long double d=c.dis(a.c);
        if (d>r+a.r+eps) return 0;
        if (abs(d-r-a.r)<=eps) return 1;
        if (abs(d-abs(r-a.r))<=eps) return 3;
        if (d<abs(r-a.r)-eps) return 4;
        return 2;
    }

    // 直线与圆的交点
    vector<Point> inter(const Line &l) const
    {
        const long double d=l.dis(c);
        const Point p=l.proj(c);
        const int t=relation(l);
        if (t==0) return vector<Point>();
        if (t==1) return vector<Point>{p};
        const long double k=sqrt(r*r-d*d);
        return vector<Point>{p-(l.v/l.v.len())*k,p+(l.v/l.v.len())*k};
    }

    // 圆与圆交点
    vector<Point> inter(const Circle &a) const
    {
        const long double d=c.dis(a.c);
        const int t=relation(a);
        if (t==-1 || t==0 || t==4) return vector<Point>();
        Point e=a.c-c; e=e/e.len()*r;
        if (t==1 || t==3) 
        {
            if (r*r+d*d-a.r*a.r>=-eps) return vector<Point>{c+e};
            return vector<Point>{c-e};
        }
        const long double costh=(r*r+d*d-a.r*a.r)/(2*r*d),sinth=sqrt(1-costh*costh);
        return vector<Point>{c+e.rot(costh,-sinth),c+e.rot(costh,sinth)};
    }

    // 圆与圆交面积
    long double inter_area(const Circle &a) const
    {
        const long double d=c.dis(a.c);
        const int t=relation(a);
        if (t==-1) return area();
        if (t<2) return 0;
        if (t>2) return min(area(),a.area());
        const long double costh1=(r*r+d*d-a.r*a.r)/(2*r*d),costh2=(a.r*a.r+d*d-r*r)/(2*a.r*d);
        const long double sinth1=sqrt(1-costh1*costh1),sinth2=sqrt(1-costh2*costh2);
        const long double th1=acos(costh1),th2=acos(costh2);
        return r*r*(th1-costh1*sinth1)+a.r*a.r*(th2-costh2*sinth2);
    }

    // 过圆外一点圆的切线
    vector<Line> tangent(const Point &a) const
    {
        const int t=is_in(a);
        if (t==1) return vector<Line>();
        if (t==-1)
        {
            const Point v={-(a-c).y,(a-c).x};
            return vector<Line>{{a,v}};
        }
        Point e=a-c; e=e/e.len()*r;
        const long double costh=r/c.dis(a),sinth=sqrt(1-costh*costh);
        const Point t1=c+e.rot(costh,-sinth),t2=c+e.rot(costh,sinth);
        return vector<Line>{{a,t1-a},{a,t2-a}};
    }

    // 两圆的公切线
    vector<Line> tangent(const Circle &a) const
    {
        const int t=relation(a);
        vector<Line> lines;
        if (t==-1 || t==4) return lines;
        if (t==1 || t==3)
        {
            const Point p=inter(a)[0],v={-(a.c-c).y,(a.c-c).x};
            lines.push_back({p,v});
        }
        const long double d=c.dis(a.c);
        const Point e=(a.c-c)/(a.c-c).len();
        if (t<=2)
        {
            const long double costh=(r-a.r)/d,sinth=sqrt(1-costh*costh);
            const Point d1=e.rot(costh,-sinth),d2=e.rot(costh,sinth);
            const Point u1=c+d1*r,u2=c+d2*r,v1=a.c+d1*a.r,v2=a.c+d2*a.r;
            lines.push_back({u1,v1-u1}); lines.push_back({u2,v2-u2});
        }
        if (t==0)
        {
            const long double costh=(r+a.r)/d,sinth=sqrt(1-costh*costh);
            const Point d1=e.rot(costh,-sinth),d2=e.rot(costh,sinth);
            const Point u1=c+d1*r,u2=c+d2*r,v1=a.c-d1*a.r,v2=a.c-d2*a.r;
            lines.push_back({u1,v1-u1}); lines.push_back({u2,v2-u2});
        }
        return lines;
    }
};

Circle circ(const Point &a,const Point &b,const Point &c)
{
    const Point v1=b-a,v2=c-a;
    const Point _v1={v1.y,-v1.x},_v2={v2.y,-v2.x};
    const Line l1={(a+b)/2,_v1},l2={(a+c)/2,_v2};
    const Point o=l1.inter(l2);
    return {o,o.dis(a)};
}

struct Minc
{
    vector<Point> p;
    vector<vector<Circle>> c;
    vector<vector<long double>> dp;
    vector<vector<size_t>> nxt;

    Minc(const vector<Point> &p):p(p),c(p.size(),vector<Circle>(p.size())),dp(p.size(),vector<long double>(p.size(),1e20)),nxt(p.size(),vector<size_t>(p.size())) {}

    long double solve(const int k)
    {
        const int n=p.size()-1;
        for (int i=1;i<=n;i++)
        {
            c[i][i]={p[i],0.0};
            for (int j=i+1;j<=n;j++)
            {
                c[i][j]=c[i][j-1];
                if (!c[i][j].is_in(p[j]))
                {
                    c[i][j]={p[j],0.0};
                    for (int k=i;k<j;k++)
                    {
                        if (!c[i][j].is_in(p[k]))
                        {
                            c[i][j]={(p[j]+p[k])/2,(p[j]-p[k]).len()/2};
                            for (int l=i;l<k;l++)
                            {
                                if (!c[i][j].is_in(p[l]))
                                {
                                    c[i][j]=circ(p[j],p[k],p[l]);
                                }
                            }
                        }
                    }
                }
            }
        }
        for (int i=1;i<=n;i++)
        {
            size_t now=n+1;
            nxt[i][i]=i+1;
            for (int j=i-1;j>=1;j--)
            {
                if (abs(c[j][i].r-c[j+1][i].r)<=eps) nxt[j][i]=nxt[j+1][i];
                else nxt[j][i]=j+1;
            }
        }
        dp[0][0]=0.0;
        for (int i=1;i<=n;i++)
        {
            for (int k=1;k<=i;k++)
            {
                for (int j=1;j<=i;j=nxt[j][i])
                {
                    dp[i][k]=min(dp[i][k],dp[j-1][k-1]+c[j][i].r);
                }
            }
        }
        return dp[n][k];
    }
};

int main()
{
    int n,k;
    long long x1;
    scanf("%d%d%lld",&n,&k,&x1);
    vector<long long> x(n+1),y(n+1);
    for (int i=1;i<=n;i++)
    {
        x[i]=i==1?x1:(y[i-1]*233811181+1)%2147483647;
        y[i]=(x[i]*233811181+1)%2147483647;
    }
    vector<Point> p(n+1);
    for (int i=1;i<=n;i++) p[i]={1.0*x[i],1.0*y[i]};
    Minc minc(p);
    printf("%.5Le\n",minc.solve(k));
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 2ms
memory: 4436kb

input:

100 23 213

output:

1.31935e+09

result:

ok found '1319350000.0000000', expected '1319350480.8007326', error '0.0000004'

Test #2:

score: -100
Wrong Answer
time: 1ms
memory: 3784kb

input:

10 1 1060

output:

1.04275e+09

result:

wrong answer 1st numbers differ - expected: '1042753143.3451676', found: '1042750000.0000000', error = '0.0000030'