QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#114712#5039. Black and Whitehos_lyricWA 3ms6196kbC++145.2kb2023-06-23 07:34:162023-06-23 07:34:18

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-06-23 07:34:18]
  • 评测
  • 测评结果:WA
  • 用时:3ms
  • 内存:6196kb
  • [2023-06-23 07:34:16]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;

constexpr int LIM_INV = 200'010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];

void prepare() {
  inv[1] = 1;
  for (int i = 2; i < LIM_INV; ++i) {
    inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
  }
  fac[0] = invFac[0] = 1;
  for (int i = 1; i < LIM_INV; ++i) {
    fac[i] = fac[i - 1] * i;
    invFac[i] = invFac[i - 1] * inv[i];
  }
}
Mint binom(Int n, Int k) {
  if (n < 0) {
    if (k >= 0) {
      return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
    } else if (n - k >= 0) {
      return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
    } else {
      return 0;
    }
  } else {
    if (0 <= k && k <= n) {
      assert(n < LIM_INV);
      return fac[n] * invFac[k] * invFac[n - k];
    } else {
      return 0;
    }
  }
}


/*
  (0, 0) -> (M, N)
  
  upper left diagonal from (x, y)
  
  - (x, y), (x+1, y): +1
  - (x, y), (x, y+1): 0
  or
  - (x, y), (x+1, y): 0
  - (x, y), (x, y+1): -1
*/

int main() {
  prepare();
  
  for (int numCases; ~scanf("%d", &numCases); ) { for (int caseId = 1; caseId <= numCases; ++caseId) {
    int M, N, K;
    scanf("%d%d%d", &N, &M, &K);
    
    const int half = (M + N + 1) / 2;
    const int base = (N + 1) / 2;
    const int x = base - K;
    const int y = half - x;
    Mint ans = 0;
    if (0 <= x && x <= M && 0 <= y && y <= N) {
      ans = binom(half, x) * binom(M + N - half, M - x);
    }
    printf("%u\n", ans.x);
  }
#ifndef LOCAL
  break;
#endif
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 3ms
memory: 5956kb

input:

5
1 1 0
1 1 -1
2 2 1
2 2 0
4 4 1

output:

1
0
1
4
16

result:

ok 5 number(s): "1 0 1 4 16"

Test #2:

score: -100
Wrong Answer
time: 1ms
memory: 6196kb

input:

100
1 1 -10
1 1 -9
1 1 -8
1 1 -7
1 1 -6
1 1 -5
1 1 -4
1 1 -3
1 1 -2
1 1 -1
1 1 0
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 8
1 1 9
1 1 10
1 2 -10
1 2 -9
1 2 -8
1 2 -7
1 2 -6
1 2 -5
1 2 -4
1 2 -3
1 2 -2
1 2 -1
1 2 0
1 2 1
1 2 2
1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
1 2 8
1 2 9
1 2 10
1 3 -10
1 3 -9
1 3 -...

output:

0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
3
0
0
0
0
0
0

result:

wrong answer 31st numbers differ - expected: '0', found: '1'