QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#113883 | #6638. Treelection | maspy | AC ✓ | 1645ms | 172260kb | C++23 | 24.0kb | 2023-06-19 22:46:45 | 2023-06-19 22:46:46 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/graph/tree.hpp"
#line 2 "library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
constexpr bool is_directed() { return directed; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
pair<Graph<T, directed>, vc<int>> rearrange(vc<int> V) {
if (len(new_idx) != N) new_idx.assign(N, -1);
if (len(used_e) != M) used_e.assign(M, 0);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> es;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
used_e[e.id] = 1;
G.add(new_idx[a], new_idx[b], e.cost);
es.eb(e.id);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: es) used_e[eid] = 0;
G.build();
return {G, es};
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 4 "library/graph/tree.hpp"
// HLD euler tour をとっていろいろ。
// 木以外、非連結でも dfs 順序や親がとれる。
template <typename GT>
struct Tree {
using Graph_type = GT;
GT &G;
using WT = typename GT::cost_type;
int N;
vector<int> LID, RID, head, V, parent, VtoE;
vc<int> depth;
vc<WT> depth_weighted;
Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }
void build(int r = 0, bool hld = 1) {
if (r == -1) return; // build を遅延したいとき
N = G.N;
LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
depth.assign(N, -1), depth_weighted.assign(N, 0);
assert(G.is_prepared());
int t1 = 0;
dfs_sz(r, -1, hld);
dfs_hld(r, t1);
}
void dfs_sz(int v, int p, bool hld) {
auto &sz = RID;
parent[v] = p;
depth[v] = (p == -1 ? 0 : depth[p] + 1);
sz[v] = 1;
int l = G.indptr[v], r = G.indptr[v + 1];
auto &csr = G.csr_edges;
// 使う辺があれば先頭にする
for (int i = r - 2; i >= l; --i) {
if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
}
int hld_sz = 0;
for (int i = l; i < r; ++i) {
auto e = csr[i];
if (depth[e.to] != -1) continue;
depth_weighted[e.to] = depth_weighted[v] + e.cost;
VtoE[e.to] = e.id;
dfs_sz(e.to, v, hld);
sz[v] += sz[e.to];
if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
}
}
void dfs_hld(int v, int ×) {
LID[v] = times++;
RID[v] += LID[v];
V[LID[v]] = v;
bool heavy = true;
for (auto &&e: G[v]) {
if (depth[e.to] <= depth[v]) continue;
head[e.to] = (heavy ? head[v] : e.to);
heavy = false;
dfs_hld(e.to, times);
}
}
vc<int> heavy_path_at(int v) {
vc<int> P = {v};
while (1) {
int a = P.back();
for (auto &&e: G[a]) {
if (e.to != parent[a] && head[e.to] == v) {
P.eb(e.to);
break;
}
}
if (P.back() == a) break;
}
return P;
}
int e_to_v(int eid) {
auto e = G.edges[eid];
return (parent[e.frm] == e.to ? e.frm : e.to);
}
int v_to_e(int v) { return VtoE[v]; }
int ELID(int v) { return 2 * LID[v] - depth[v]; }
int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }
/* k: 0-indexed */
int LA(int v, int k) {
assert(k <= depth[v]);
while (1) {
int u = head[v];
if (LID[v] - k >= LID[u]) return V[LID[v] - k];
k -= LID[v] - LID[u] + 1;
v = parent[u];
}
}
int la(int u, int v) { return LA(u, v); }
int LCA(int u, int v) {
for (;; v = parent[head[v]]) {
if (LID[u] > LID[v]) swap(u, v);
if (head[u] == head[v]) return u;
}
}
// root を根とした場合の lca
int LCA_root(int u, int v, int root) {
return LCA(u, v) ^ LCA(u, root) ^ LCA(v, root);
}
int lca(int u, int v) { return LCA(u, v); }
int lca_root(int u, int v, int root) { return LCA_root(u, v, root); }
int subtree_size(int v, int root = -1) {
if (root == -1) return RID[v] - LID[v];
if (v == root) return N;
int x = jump(v, root, 1);
if (in_subtree(v, x)) return RID[v] - LID[v];
return N - RID[x] + LID[x];
}
int dist(int a, int b) {
int c = LCA(a, b);
return depth[a] + depth[b] - 2 * depth[c];
}
WT dist_weighted(int a, int b) {
int c = LCA(a, b);
return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
}
// a is in b
bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }
int jump(int a, int b, ll k) {
if (k == 1) {
if (a == b) return -1;
return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
}
int c = LCA(a, b);
int d_ac = depth[a] - depth[c];
int d_bc = depth[b] - depth[c];
if (k > d_ac + d_bc) return -1;
if (k <= d_ac) return LA(a, k);
return LA(b, d_ac + d_bc - k);
}
vc<int> collect_child(int v) {
vc<int> res;
for (auto &&e: G[v])
if (e.to != parent[v]) res.eb(e.to);
return res;
}
vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
// [始点, 終点] の"閉"区間列。
vc<pair<int, int>> up, down;
while (1) {
if (head[u] == head[v]) break;
if (LID[u] < LID[v]) {
down.eb(LID[head[v]], LID[v]);
v = parent[head[v]];
} else {
up.eb(LID[u], LID[head[u]]);
u = parent[head[u]];
}
}
if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
reverse(all(down));
up.insert(up.end(), all(down));
return up;
}
vc<int> restore_path(int u, int v) {
vc<int> P;
for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
if (a <= b) {
FOR(i, a, b + 1) P.eb(V[i]);
} else {
FOR_R(i, b, a + 1) P.eb(V[i]);
}
}
return P;
}
};
#line 5 "main.cpp"
void solve() {
LL(N);
Graph<int, 1> G(N);
FOR(v, 1, N) {
INT(p);
G.add(--p, v);
}
G.build();
Tree<decltype(G)> tree(G);
auto calc = [&](ll LIM) -> pair<vc<int>, vc<int>> {
vc<int> F(N), A(N);
auto dfs = [&](auto& dfs, int v) -> int {
for (auto&& e: G[v]) { A[v] += dfs(dfs, e.to); }
ll f = max<int>(0, A[v] - LIM);
if (v > 0) A[tree.parent[v]]++;
A[v] -= f;
F[v] = f;
return f;
};
dfs(dfs, 0);
return {F, A};
};
auto check = [&](ll LIM) -> bool {
auto F = calc(LIM).fi;
return F[0] == 0;
};
ll LIM = binary_search(check, N, 0);
string ANS(N, '.');
ANS[0] = '1';
FOR(v, N) {
int x = tree.subtree_size(v) - 1;
if (x < LIM) ANS[v] = '0';
if (x > LIM) ANS[v] = '1';
}
auto [F, A] = calc(LIM - 1);
ll x = F[0];
vc<int> can(N);
auto dfs = [&](auto& dfs, int v) -> void {
can[v] = 1;
for (auto&& e: G[v]) {
if (F[e.to] >= x) { dfs(dfs, e.to); }
}
};
dfs(dfs, 0);
FOR(v, N) if (ANS[v] == '.') ANS[v] = can[v] ? '1' : '0';
print(ANS);
}
signed main() {
INT(T);
FOR(T) solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3572kb
input:
2 4 1 2 3 5 1 1 2 2
output:
1100 10000
result:
ok 2 lines
Test #2:
score: 0
Accepted
time: 167ms
memory: 13556kb
input:
10 100000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...
result:
ok 10 lines
Test #3:
score: 0
Accepted
time: 231ms
memory: 100664kb
input:
1 1000000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...
result:
ok single line: '111111111111111111111111111111...0000000000000000000000000000000'
Test #4:
score: 0
Accepted
time: 1098ms
memory: 86064kb
input:
1 1000000 1 2 2 3 5 1 7 3 9 8 4 11 9 6 10 12 10 13 16 18 14 16 7 24 23 21 14 8 26 27 17 21 33 24 20 17 5 34 29 34 37 20 12 22 39 44 33 37 32 27 31 25 30 46 39 26 53 4 11 55 41 29 6 22 32 36 52 57 65 38 59 67 51 56 30 61 36 64 62 19 51 63 53 83 38 75 31 41 49 43 60 18 62 67 91 81 44 25 55 98 86 64 46...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...
result:
ok single line: '111111111111111111111111111111...0000000000000000000000000000000'
Test #5:
score: 0
Accepted
time: 217ms
memory: 11596kb
input:
65764 13 1 1 1 1 1 1 1 1 2 10 10 11 11 1 1 2 2 2 4 4 4 5 10 14 1 2 2 3 3 3 4 4 5 6 10 12 13 14 1 2 2 3 3 3 4 5 5 6 6 7 8 13 1 2 2 3 3 4 5 5 5 6 8 12 13 1 1 1 2 2 3 5 7 7 7 9 9 12 1 1 1 2 2 3 5 7 7 9 10 14 1 1 2 2 3 4 5 6 7 7 8 12 12 14 1 2 3 4 4 5 5 5 7 7 7 10 13 14 1 1 1 1 1 2 2 2 3 10 10 10 11 13 ...
output:
1000000000000 11000000000 11101000010000 11100000000000 1110100000000 1010001000000 101000100000 11011001000000 11111010000000 10000000000000 1111010000000 111000100010000 111010001000 11000000000000 11100000000000 11001001000000 11000000000000 11111000000000 110011000000 1010000100000 1100111010000...
result:
ok 65764 lines
Test #6:
score: 0
Accepted
time: 236ms
memory: 86340kb
input:
1 1000000 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50 51 51 52...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...
result:
ok single line: '111111111111111111111111111111...0000000000000000000000000000000'
Test #7:
score: 0
Accepted
time: 344ms
memory: 172260kb
input:
1 1000000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...
result:
ok single line: '111111111111111111111111111111...1111111111111111111111111111100'
Test #8:
score: 0
Accepted
time: 203ms
memory: 86052kb
input:
1 1000000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
output:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
result:
ok single line: '100000000000000000000000000000...0000000000000000000000000000000'
Test #9:
score: 0
Accepted
time: 190ms
memory: 5356kb
input:
100 10000 1 1 2 4 1 4 4 5 6 6 1 1 10 13 3 7 7 16 11 2 15 2 19 21 5 6 8 20 12 10 9 28 14 24 30 1 8 11 1 16 34 4 10 13 25 16 6 11 16 11 2 40 1 47 24 15 29 35 21 49 8 33 26 54 46 52 48 32 54 56 11 55 7 28 30 20 4 7 58 61 65 77 65 21 82 9 22 29 3 19 3 59 26 90 48 21 89 86 95 12 98 43 30 21 59 56 43 37 6...
output:
111111111111111111111111111111111111111111101111111111111111111111111111111111111111111011111111111111111110101101111111110110101101111111111111111111111111111011011111111111111101111011110111111101011111101101111110111111011110111110011110111011001111111011110111000100010110111110101011111110110110...
result:
ok 100 lines
Test #10:
score: 0
Accepted
time: 554ms
memory: 12228kb
input:
10 100000 1 1 2 2 5 3 2 6 6 5 9 11 11 5 12 9 10 10 4 7 17 8 13 14 3 12 21 22 3 4 31 12 15 25 27 7 27 11 39 37 27 34 18 14 4 42 47 24 47 39 50 28 46 53 16 15 57 20 7 58 57 25 6 58 36 63 49 46 24 59 19 57 63 24 31 54 16 75 58 26 37 50 10 77 51 54 13 42 22 21 48 71 65 34 34 89 89 67 19 74 30 49 70 60 1...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...
result:
ok 10 lines
Test #11:
score: 0
Accepted
time: 1153ms
memory: 86216kb
input:
1 1000000 1 2 3 3 1 4 4 8 8 9 8 7 3 6 14 5 14 16 14 12 21 19 18 22 17 20 22 28 4 13 30 15 20 5 18 2 6 7 29 16 39 2 26 21 25 12 38 15 6 39 45 13 17 21 23 27 57 48 11 23 47 23 45 29 59 26 11 57 40 69 48 71 12 58 38 76 32 49 10 71 44 67 20 69 35 64 44 51 77 48 30 41 91 73 78 90 97 5 65 54 16 31 17 81 6...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...
result:
ok single line: '111111111111111111111111111111...0000000000000000000000000000000'
Test #12:
score: 0
Accepted
time: 208ms
memory: 4440kb
input:
100 10000 1 2 2 4 1 5 7 4 6 2 6 10 11 13 14 3 17 4 8 18 8 7 16 12 12 20 27 27 21 12 21 25 19 32 30 33 13 21 16 30 7 36 25 13 11 6 40 14 45 40 14 39 26 3 48 56 35 49 38 31 58 56 10 51 39 59 46 26 59 55 51 44 63 16 23 15 32 50 59 43 67 57 41 30 10 72 60 17 19 41 22 78 73 29 33 27 74 57 65 100 36 68 81...
output:
111111111111111111111111111111111111111111111111111111111111101111111111111111111111111111111111111111111111111111111111111111111111111111111101111110111111111111111111111011111111111111111111111110111101110111110111111111111111010111111111111001111111111111111111111101101111111111111101111011111011...
result:
ok 100 lines
Test #13:
score: 0
Accepted
time: 481ms
memory: 12196kb
input:
10 100000 1 1 3 3 4 3 1 2 8 10 7 6 10 12 2 2 14 10 13 10 16 9 15 21 23 18 23 27 3 9 9 5 25 29 11 32 5 38 19 9 34 21 38 15 39 34 24 33 25 44 19 15 22 25 38 18 5 35 8 50 19 15 4 16 21 50 32 50 12 29 68 27 13 49 54 18 62 45 30 37 79 7 82 32 70 79 27 78 41 33 43 17 13 2 82 44 21 29 63 27 101 96 97 50 35...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111101111111...
result:
ok 10 lines
Test #14:
score: 0
Accepted
time: 1152ms
memory: 86052kb
input:
1 1000000 1 1 2 4 4 4 6 3 3 6 3 12 11 2 7 12 6 4 1 20 13 16 6 11 25 19 25 21 22 3 21 25 29 30 13 20 12 28 16 37 20 17 16 22 40 2 36 17 43 31 21 38 27 48 50 25 22 26 17 24 49 11 51 47 47 29 31 15 24 68 29 50 48 17 59 47 76 69 9 50 44 41 29 21 36 72 78 40 70 61 13 14 13 85 24 20 93 80 67 8 96 73 86 9 ...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...
result:
ok single line: '111111111111111111111111111111...0000000000000000000000000000000'
Test #15:
score: 0
Accepted
time: 186ms
memory: 4404kb
input:
100 10000 1 2 1 2 3 2 6 5 6 7 7 4 7 11 8 6 15 10 8 1 4 5 10 7 16 11 20 27 19 1 3 8 30 22 18 29 27 29 21 25 12 29 30 24 5 8 28 16 39 43 1 2 53 43 21 36 41 37 41 45 4 4 49 56 49 39 21 27 58 64 53 58 57 57 31 32 56 46 17 8 29 8 3 20 4 29 72 67 24 74 51 52 34 92 75 78 13 3 15 37 89 58 31 54 28 71 103 88...
output:
111111111111111111111111111111111111111011111111101111111111111111111011111011111111111111011111111111110111111111101011111111111011111111111101111111000111100111010111111101010101111110111011100111111101101111111110011111111111111111111101010101111100010111111111100011011010001110110111111101111101...
result:
ok 100 lines
Test #16:
score: 0
Accepted
time: 767ms
memory: 45764kb
input:
2 500000 1 2 3 2 5 4 7 1 8 9 10 7 10 9 12 4 5 16 3 11 6 11 13 21 25 6 16 13 15 19 28 19 30 33 26 32 34 26 21 14 39 41 27 40 39 12 37 17 31 27 37 18 32 31 28 44 34 44 23 24 41 52 57 29 45 54 48 18 47 52 70 71 49 24 48 54 51 29 66 61 60 82 70 23 79 64 50 60 45 17 63 47 25 86 57 51 14 40 98 30 35 59 35...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...
result:
ok 2 lines
Test #17:
score: 0
Accepted
time: 462ms
memory: 12144kb
input:
10 100000 1 2 2 3 3 6 1 4 9 8 9 7 11 7 4 13 5 6 10 8 19 15 21 14 19 22 17 28 21 25 29 12 10 20 27 24 33 22 25 26 5 18 36 28 18 14 42 35 47 34 27 43 39 40 46 38 24 42 57 29 47 36 54 61 59 31 62 41 30 53 65 23 45 49 71 72 73 52 48 61 57 37 13 31 40 15 17 77 20 75 48 67 35 33 49 77 89 46 65 56 34 32 95...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...
result:
ok 10 lines
Test #18:
score: 0
Accepted
time: 177ms
memory: 4420kb
input:
100 10000 1 1 2 4 4 3 7 8 6 5 10 5 13 10 15 16 11 14 8 11 7 6 22 9 17 2 9 13 16 27 15 20 30 21 24 35 29 34 37 40 28 40 19 20 32 41 28 45 17 21 32 47 45 31 37 35 27 53 26 19 44 58 38 49 59 24 36 42 62 57 12 18 48 31 18 62 46 46 63 33 36 64 59 60 66 79 58 86 77 54 76 86 82 63 43 53 87 76 47 77 64 30 7...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...
result:
ok 100 lines
Test #19:
score: 0
Accepted
time: 1645ms
memory: 86896kb
input:
1 1000000 1 2 3 1 1 6 6 7 7 5 5 12 10 11 6 16 4 7 5 17 14 19 6 1 7 16 9 15 9 21 30 25 6 7 34 32 32 26 25 19 29 1 42 44 32 39 7 43 4 22 28 22 52 25 38 43 52 17 11 9 21 36 28 54 13 17 53 52 62 69 9 3 37 69 47 8 44 9 19 5 44 21 18 14 15 22 19 71 60 25 6 88 29 94 4 30 29 88 74 55 63 31 21 9 23 4 80 35 1...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111111111111111111111111111111111111111110111111111111111111111111111111111111111111111111111111...
result:
ok single line: '111111111111111111111111111111...0000000000000000000000000000000'